, Volume 8, Issue 4, pp 1014–1020 | Cite as

Chitosan/Octadecylamine-Montmorillonite Nanocomposite Containing Nigella arvensis Extract as Improved Antimicrobial Biofilm Against Foodborne Pathogens

  • Sedef İlkEmail author
  • Mehmet Şener
  • Mehtap Vural
  • Sedat Serçe


The objective of this study was to develop inexpensive and facile nanocomposites based on chitosan and organo-clay with the antimicrobial affectivity that provide the serious challenges caused by bacterial infections in various products such as food packaging materials. The chitosan with octadecylamine montmorillonite (ODA-MMT) nanocomposites by supplementing 1, 2.5, and 5 w% Nigella arvensis seed (black cumin) extract (CMBC-1, CMBC-2.5, and CMBC-5) were prepared chitosan from ionic liquid solutions in the presence of ODA-MMT and black cumin extract suspension. The effect of black cumin with different content on the structure and antimicrobial activity of the nanocomposite have been investigated. The interactions between the chitosan matrix, ODA-MMT, and black cumin extract at different conditions were characterized both physicochemically (FT-IR, SEM, and XRD) and biologically (antimicrobial). The results indicated that the formation of exfoliated nanostructure of nanocomposites was provided by loading of nanodispersed clay in matrix. Antimicrobial activity of CMBC nanocomposite film was evaluated using disc diffusion method against Gram-negative bacteria Escherichia coli ATCC 25922 and Salmonella enterica serotype Typhimurium SL 1344 and Gram-positives Staphylococcus aureus ATCC 25923 and Streptococcus mutans ATCC 25175. The antimicrobial activity studies of the CMBCs illustrated that the nanocomposites could more strongly inhibit the growth of the tested Gram-negative bacteria than Gram-positive bacteria within increased content of black cumin from 1 to 5 w%. To our knowledge, this is the first report on the antimicrobial effect of CMBC nanocomposite film. Such biomaterials within nontoxic and inexpensive properties will thus have great potential applications in the development of new packing materials that can effectively prevent the antimicrobial formation.

Graphical Abstract


Chitosan ODA-MMT Nigella arvensis Polymer-layered silicate nanocomposite Active food package Antimicrobial supplement 


  1. 1.
    Aranaz, I., Mengíbar, M., Harris, R., Paños, I., Miralles, B., Acosta, N., Galed, G., & Heras, Á. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3, 203–230.Google Scholar
  2. 2.
    Wang, S. F., Hu, Y., Zong, R. W., Tang, Y., Cheng, Z. Y., & Fan, W. C. (2004). Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite. Applied Clay Science, 25(1–2), 49–55.CrossRefGoogle Scholar
  3. 3.
    Darder, M., Colilla, M., & Ruiz-Hitzky, E. (2003). Biopolymer-clay nanocomposites based on chitosan intercalated in montmorillonite. Chemistry of Materials, 15, 3774–3780.CrossRefGoogle Scholar
  4. 4.
    Wang, S., Lu, A., & Zhang, L. (2016). Recent advances in regenerated cellulose materials. Progress in Polymer Science, 53, 169–206.CrossRefGoogle Scholar
  5. 5.
    Reddy, J. P., & Rhim, J. W. (2014). Isolation and characterization of cellulose nanocrystals from garlic skin. Materials Letters, 129, 20–23.CrossRefGoogle Scholar
  6. 6.
    Lv, F., Wang, C., Zhu, P., & Zhang, C. (2015). Isolation and recovery of cellulose from waste nylon/cotton blended fabrics by 1-allyl-3-methylimidazolium chloride. Carbohydrate Polymers, 123, 424–431.CrossRefGoogle Scholar
  7. 7.
    Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., & Islam, M. S. (2013). Physicochemical characterization of cellulose nanowhiskers extracted from oil palm biomass microcrystalline cellulose. Materials Letters, 113, 87–89.CrossRefGoogle Scholar
  8. 8.
    Rao, M., Kanatt, S., Chawla, S., & Sharma, A. (2010). Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82, 1243–1247.CrossRefGoogle Scholar
  9. 9.
    Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 35, 463–470.CrossRefGoogle Scholar
  10. 10.
    Ray, S. S., & Okamoto, M. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science, 28(11), 1539–1641.CrossRefGoogle Scholar
  11. 11.
    Sun, J. X., Sun, X. F., Zhao, H., & Sun, R. C. (2004). Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84, 331–339.CrossRefGoogle Scholar
  12. 12.
    Jiang, F., & Hsieh, Y. L. (2015). Cellulose nanocrystal isolation from tomato peels and assembled nanofibers. Carbohydrate Polymers, 122, 60–68.CrossRefGoogle Scholar
  13. 13.
    Duran, M., Aday, M. S., Zorba, N. N. D., Temizkan, R., Büyükcan, M. B., & Caner, C. (2016). Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98, 354–363.CrossRefGoogle Scholar
  14. 14.
    Poletto, M., Ornaghi, H. L., & Zattera, A. J. (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7, 6105–6119.CrossRefGoogle Scholar
  15. 15.
    Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT- Food Science and Technology, 46, 477–484.CrossRefGoogle Scholar
  16. 16.
    Davis, P. H. (1965). Flora of Turkey and the East Aegean Islands, 6. Edinburgh: University Press.Google Scholar
  17. 17.
    Davis, P. H. (1988). Flora of Turkey and the East Aegean Islands, 10. Edinburgh: University Press.Google Scholar
  18. 18.
    Landa, P., Marsik, P., Havlik, J., Kloucek, P., Vanek, T., & Kokoska, L. (2009). Evaluation of antimicrobial and anti-inflammatory activities of seed extracts from six Nigella species. Journal of Medicinal Food, 12(2), 408–415.CrossRefGoogle Scholar
  19. 19.
    Zohary, M. (1983). The genus Nigella (Ranunculaceae)—A taxonomic revision. Plant Systematics and Evolultion, 142, 71–107.CrossRefGoogle Scholar
  20. 20.
    Atia, F., Mountian, I., Simaels, J., Waelkens, E., & Van Driessche, W. (2002). Stimulatory effects on Na+ transport in renal epithelia induced by extracts of Nigella arvensis are caused by adenosine. Journal of Experimental Biology, 205, 3729–3737.Google Scholar
  21. 21.
    Kaya, M. S., Kara, M., & Özbek, H. (2003). Çörek otu (Nigella sativa) tohumunun insan hücresel bağışıklık sisteminin CD3+, CD4+, CD8+ hücreleri ve toplam lökosit sayısı üzerine etkileri. Genel Tıp Dergisi, 13, 109–112.Google Scholar
  22. 22.
    Kökdil, G., & Yılmaz, H. (2005). Analysis of the fixed oils of the genus Nigella L.(Ranunculaceae) in Turkey. Biochemical Systematics and Ecology, 33, 1203–1209.CrossRefGoogle Scholar
  23. 23.
    Abdel-Daim, M. M., & Ghazy, E. W. (2015). Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits. Iranian Journal of Basic Medical Sciences, 8, 221–227.Google Scholar
  24. 24.
    Beheshti, F., Khazaei, M., & Hosseini, M. (2016). Neuropharmacological effects of Nigella sativa. Avicenna Journal of Phytomedicine, 6, 124–141.Google Scholar
  25. 25.
    National Committee for Clinical Laboratory Standards Performance standards for antimicrobial disk susceptibility tests (NCCLS). (2003). Wayne, PA Approved standard, 8th edn. M2-A8.Google Scholar
  26. 26.
    Liu, K. H., Liu, T. Y., Chen, S. Y., & Liu, D. M. (2008). Drug release behavior of chitosan–montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomaterialia, 4, 1038–1045.CrossRefGoogle Scholar
  27. 27.
    Peng, P., Yang, Z., Wu, M., Zhang, Q., & Chen, G. (2013). Effect of montmorillonite modification and maleic anhydrate-grafted polypropylene on the microstructure and mechanical properties of polypropylene/montmorillonitenanocomposites. Journal of Applied Polymer Science, 130, 3952–3960.Google Scholar
  28. 28.
    Filho, G. R., de Assuncao, R. M. N., Vieira, J. G., Meireles, C. D. S., Cerqueira, D. A., Barud, H. D. S., Ribeiro, S. J. L., & Messaddeq, Y. (2007). Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polymer Degradation and Stability, 92, 205–210.CrossRefGoogle Scholar
  29. 29.
    Wang, S. F., Shen, L., Tong, Y. J., Chen, L., Phang, I. Y., Lim, P. Q., & Liu, T. X. (2005). Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization. Polymer Degradation and Stability, 90(1), 123–131.CrossRefGoogle Scholar
  30. 30.
    Xu, D. F., Cai, J., & Zhang, L. N. (2016). High strength cellulose composite films reinforced with clay for applications as antibacterial materials. Chinese Journal of Polymer Science, 34(10), 1281–1289.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sedef İlk
    • 1
    Email author
  • Mehmet Şener
    • 2
  • Mehtap Vural
    • 3
  • Sedat Serçe
    • 3
  1. 1.Central Laboratory Research CenterNiğde Ömer Halisdemir UniversityNiğdeTurkey
  2. 2.Department of Geology, Faculty of EngineeringNiğde Ömer Halisdemir UniversityNiğdeTurkey
  3. 3.Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and TechnologiesNiğde Ömer Halisdemir UniversityNiğdeTurkey

Personalised recommendations