, Volume 8, Issue 4, pp 1008–1013 | Cite as

Synthesis and Characterization of Co-Polymer Nanocomposite Film and its Enhanced Antimicrobial Behavior

  • E. Muthusankar
  • S. Vignesh Kumar
  • Narendran Rajagopalan
  • D. RagupathyEmail author


This work reports the synthesis, characterization, and antimicrobial activity of polyaniline/polyvinyl alcohol (PANI/PVA) and polydiphenylamine/polyvinyl alcohol (PDPA/PVA) co-polymer nanocomposite films. Initially, chemical oxidative polymerization was employed to synthesis PANI and PDPA by oxidizing aniline (AN) and diphenylamine (DPA) in the presence of ammonium peroxydisulfate (APS) as an oxidant. A trace amount of prepared PANI and PDPA were used to prepare nanocomposite films by solution casting technique, using PVA as a stabilizer. Surface morphological studies reveal the impregnated amorphous structure of PANI and PDPA size in the range of ~ 50–150 nm. Fourier transform infrared (FTIR) examines to confirm the presence of PANI, PDPA, and PVA in nanocomposite film. Disk diffusion approach was adopted to study the antimicrobial activity of PANI/PVA and PDPA/PVA nanocomposite films.


Disk diffusion Conducting polymers Antimicrobial activity Nanocomposite Oxidant 



The authors acknowledge the basic research support from National Institute of Technology Puducherry, Karaikal, India.

Funding Information

This study is supported by the Science and Engineering Research Board—Department of Science Technology grant (SB/FT/CS-117/2014).


  1. 1.
    Tan, S., Li, G., Shen, J., Liu, Y., & Zong, M. (2000). Study of modified polypropylene nonwoven cloth. II. Antibacterial activity of modified polypropylene nonwoven cloths. Journal of Applied Polymer Science, 77(9), 1869–1876.CrossRefGoogle Scholar
  2. 2.
    Kenawy, E. R., Abdel-Hay, F. I., El-Shanshoury, A. E. R. R., & El-Newehy, M. H. (2002a). Biologically active polymers. V. Synthesis and antimicrobial activity of modified poly (glycidyl methacrylate-co-2-hydroxyethyl methacrylate) derivatives with quaternary ammonium and phosphonium salts. Journal of Polymer Science Part A: Polymer Chemistry, 40(14), 2384–2393.CrossRefGoogle Scholar
  3. 3.
    Hirano, S., & Nagao, N. (1989). Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agricultural and Biological Chemistry, 53(11), 3065–3066.Google Scholar
  4. 4.
    Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., & Li, P. (2007). Antifungal properties of Schiff bases of chitosan, N-substituted chitosan and quaternized chitosan. Carbohydrate Research, 342(10), 1329–1332.CrossRefGoogle Scholar
  5. 5.
    da Silva, C. M., da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V., & de Fátima, Â. (2011). Schiff bases: a short review of their antimicrobial activities. Journal of Advanced Research, 2(1), 1–8.CrossRefGoogle Scholar
  6. 6.
    Irimia-Vladu, M., & Fergus, J. W. (2006). Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing. Synthetic Metals, 156(21), 1401–1407.CrossRefGoogle Scholar
  7. 7.
    Patil, D. S., Shaikh, J. S., Dalavi, D. S., Kalagi, S. S., & Patil, P. S. (2011). Chemical synthesis of highly stable PVA/PANI films for supercapacitor application. Materials Chemistry and Physics, 128(3), 449–455.CrossRefGoogle Scholar
  8. 8.
    Hou, W., Xiao, Y., Han, G., Fu, D., & Wu, R. (2016). Serrated, flexible and ultrathin polyaniline nanoribbons: an efficient counter electrode for the dye-sensitized solar cell. Journal of Power Sources, 322, 155–162.CrossRefGoogle Scholar
  9. 9.
    Gizdavic-Nikolaidis, M. R., Bennett, J. R., Swift, S., Easteal, A. J., & Ambrose, M. (2011). Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomaterialia, 7(12), 4204–4209.CrossRefGoogle Scholar
  10. 10.
    Jia, Q., Shan, S., Jiang, L., Wang, Y., & Li, D. (2012). Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. Journal of Applied Polymer Science, 125(5), 3560–3566.CrossRefGoogle Scholar
  11. 11.
    Lashkenari, M. S., & Eisazadeh, H. (2016). Enhanced functionality of colloidal polyaniline/polyvinyl alcohol nanocomposite as an antibacterial agent. Journal of Vinyl and Additive Technology, 22(3), 267–272.CrossRefGoogle Scholar
  12. 12.
    Ghaffari-Moghaddam, M., & Eslahi, H. (2014). Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arabian Journal of Chemistry, 7(5), 846–855.CrossRefGoogle Scholar
  13. 13.
    Hua, F., & Ruckenstein, E. (2004). Fluorescence study of aggregation in water of PEO-grafted polydiphenylamine. Langmuir, 20(10), 3954–3961.CrossRefGoogle Scholar
  14. 14.
    Ragupathy, D., Gopalan, A. I., & Lee, K. P. (2009). Layer-by-layer electrochemical assembly of poly (diphenylamine)/phosphotungstic acid as ascorbic acid sensor. Microchimica Acta, 166(3–4), 303–310.CrossRefGoogle Scholar
  15. 15.
    Tsai, Y. T., Wen, T. C., & Gopalan, A. (2003). Tuning the optical sensing of pH by poly (diphenylamine). Sensors and Actuators B: Chemical, 96(3), 646–657.CrossRefGoogle Scholar
  16. 16.
    Ragupathy, D., Gomathi, P., Lee, S. C., Al-Deyab, S. S., Lee, S. H., & Do Ghim, H. (2012). One-step synthesis of electrically conductive polyaniline nanostructures by oxidative polymerization method. Journal of Industrial and Engineering Chemistry, 18(4), 1213–1215.CrossRefGoogle Scholar
  17. 17.
    Wang, H., Wen, H., Hu, B., Fei, G., Shen, Y., Sun, L., & Yang, D. (2017). Facile approach to fabricate waterborne polyaniline nanocomposites with environmental benignity and high physical properties. Scientific Reports, 7, srep43694.CrossRefGoogle Scholar
  18. 18.
    Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure and Applied Chemistry, 83(10), 1803–1817.CrossRefGoogle Scholar
  19. 19.
    Ghobadi, S., Mehraeen, S., Bakhtiari, R., Shamloo, B., Sadhu, V., Papila, M., & Gürsel, S. A. (2016). PVA/PANI/rGO ternary electrospun mats as metal-free anti-bacterial substrates. RSC Advances, 6(95), 92434–92442.CrossRefGoogle Scholar
  20. 20.
    Wen, T. C., Sivakumar, C., & Gopalan, A. (2002). Studies on processable conducting blend of poly (diphenylamine) and poly (vinylidene fluoride). Materials Letters, 54(5), 430–441.CrossRefGoogle Scholar
  21. 21.
    Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology, 8(6), 423–435.CrossRefGoogle Scholar
  22. 22.
    Qazi, T. H., Rai, R., & Boccaccini, A. R. (2014). Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials, 35(33), 9068–9086.CrossRefGoogle Scholar
  23. 23.
    Riaz, U., & Ashraf, S. M. (2013). Evaluation of antibacterial activity of nanostructured copolymers of poly (naphthylamine). International Journal of Polymeric Materials and Polymeric Biomaterials, 62(7), 406–410.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. Muthusankar
    • 1
    • 2
  • S. Vignesh Kumar
    • 3
  • Narendran Rajagopalan
    • 4
  • D. Ragupathy
    • 1
    Email author
  1. 1.Department of Chemistry, Nano Electrochemistry Laboratory (NEL)National Institute of Technology PuducherryKaraikalIndia
  2. 2.Department of Electronics and Communication EngineeringNational Institute of Technology PuducherryKaraikalIndia
  3. 3.Department of BiotechnologyAnna University Regional CampusCoimbatoreIndia
  4. 4.Department of Computer Science and EngineeringNational Institute of Technology PuducherryKaraikalIndia

Personalised recommendations