, Volume 8, Issue 4, pp 997–1007 | Cite as

Synthesis of Reduced Graphene Oxide-Silver Nanocomposites and Assessing Their Toxicity on the Green Microalga Chlorella vulgaris

  • Fatemeh Nazari
  • Ali MovafeghiEmail author
  • Saeed Jafarirad
  • Morteza Kosari-Nasab
  • Baharak Divband


The growing demands for nanotechnology in the recent years have resulted in environmental release of nanomaterials. In the current study, reduced graphene oxide-silver nanocomposites (Ag-rGO) were synthesized by an easy method and their characteristics were determined using X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-Vis), energy dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) techniques. Subsequently, toxicity of Ag-rGO was examined on the marine microalga Chlorella vulgaris. After treatment of algal cells with different concentrations of Ag-rGO for 24 h, growth parameters have been significantly decreased. In addition, a considerable reduction in viability of the treated cells was designated. Further considerable effects of Ag-rGO treatments have been revealed by increments in the activities of a number of antioxidant enzymes and reductions in the photosynthetic pigment contents. Our results showed that the main toxic effects of Ag-rGO are associated with the presence of Ag nanoparticles in the structure of these nanocomposites.


Ag-rGO nanocomposites Chlorella vulgaris Green microalga Toxicity Oxidative stress 



The authors are indebted to R. Tarrahi for critically reading the manuscript. The authors thank the University of Tabriz, Iran, for all the support provided.


  1. 1.
    Hu, X., & Zhou, Q. (2013). Health and ecosystem risks of graphene. Chemical Reviews, 113(5), 3815–3835.CrossRefGoogle Scholar
  2. 2.
    Jastrzebska, A. M., Kurtycz, P., & Olszyna, A. R. (2012). Recent advances in graphene family materials toxicity investigations. Journal of Nanoparticle Research, 14(12), 1–21.CrossRefGoogle Scholar
  3. 3.
    Hu, C., Wang, Q., Zhao, H., Wang, L., Guo, S., & Li, X. (2015). Ecotoxicological effects of graphene oxide on the protozoan Euglena gracilis. Chemosphere, 128, 184–190.CrossRefGoogle Scholar
  4. 4.
    Shao, W., Liu, X., Min, H., Dong, G., Feng, Q., & Zuo, S. (2015). Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Applied Materials & Interfaces, 7(12), 6966–6973.CrossRefGoogle Scholar
  5. 5.
    Zhao, S., Wang, Q., Zhao, Y., Rui, Q., & Wang, D. (2015). Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environmental Toxicology and Pharmacology, 39(1), 145–156.CrossRefGoogle Scholar
  6. 6.
    Thu, T. V., Ko, P. J., Phuc, N. H. H., & Sandhu, A. (2013). Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids. Journal of Nanoparticle Research, 15(10), 1–13.CrossRefGoogle Scholar
  7. 7.
    Qian, H., Li, J., Sun, L., Chen, W., Sheng, G. D., Liu, W., & Fu, Z. (2009). Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic Toxicology, 94(1), 56–61.CrossRefGoogle Scholar
  8. 8.
    Chen, X., Zhu, X., Li, R., Yao, H., Lu, Z., & Yang, X. (2012). Photosynthetic toxicity and oxidative damage induced by nano-Fe3O4 on Chlorella vulgaris in aquatic environment. Open Journal of Ecology, 2(01), 21–28.CrossRefGoogle Scholar
  9. 9.
    Hu, X., Lu, K., Mu, L., Kang, J., & Zhou, Q. (2014). Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon, 80, 665–676.CrossRefGoogle Scholar
  10. 10.
    Chen, T.-H., Lin, C.-Y., & Tseng, M.-C. (2011). Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio rerio). Marine Pollution Bulletin, 63(5), 303–308.CrossRefGoogle Scholar
  11. 11.
    Khataee, A., Movafeghi, A., Nazari, F., Vafaei, F., Dadpour, M. R., Hanifehpour, Y., & Joo, S. W. (2014). The toxic effects of L-cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza. Journal of Nanoparticle Research, 16(12), 1–10.CrossRefGoogle Scholar
  12. 12.
    Cherchi, C., & Gu, A. Z. (2010). Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science & Technology, 44(21), 8302–8307.CrossRefGoogle Scholar
  13. 13.
    Sadiq, I. M., Dalai, S., Chandrasekaran, N., & Mukherjee, A. (2011). Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 74(5), 1180–1187.CrossRefGoogle Scholar
  14. 14.
    Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1(3), 203–212.CrossRefGoogle Scholar
  15. 15.
    Jafarirad, S., Kordi, M., & Kosari-Nasab, M. (2017). Extracellular one-pot synthesis of nanosilver using Hyssopus officinalis L.: a biophysical approach on bioconstituent-Ag+ interactions. Inorganic and Nano-Metal Chemistry, 47(4), 632–638.CrossRefGoogle Scholar
  16. 16.
    Suman, T., Rajasree, S. R., & Kirubagaran, R. (2015). Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxicology and Environmental Safety, 113, 23–30.CrossRefGoogle Scholar
  17. 17.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254.CrossRefGoogle Scholar
  18. 18.
    Obinger, C., Maj, M., Nicholls, P., & Loewen, P. (1997). Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase. Archives of Biochemistry and Biophysics, 342(1), 58–67.CrossRefGoogle Scholar
  19. 19.
    Boominathan, R., & Doran, P. M. (2002). Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytologist, 156(2), 205–215.CrossRefGoogle Scholar
  20. 20.
    Winterbourn, C. C., McGrath, B. M., & Carrell, R. W. (1976). Reactions involving superoxide and normal and unstable haemoglobins. Biochemical Journal, 155(3), 493–502.CrossRefGoogle Scholar
  21. 21.
    Sukran, D., GUNES, T., & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-a, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13–18.Google Scholar
  22. 22.
    Wang, S., Zhang, Y., Ma, H. L., Zhang, Q., Xu, W., Peng, J., Li, J., Yu, Z. Z., & Zhai, M. (2013). Ionic-liquid-assisted facile synthesis of silver nanoparticle-reduced graphene oxide hybrids by gamma irradiation. Carbon, 55, 245–252.CrossRefGoogle Scholar
  23. 23.
    Fu, L., Zheng, Y., Fu, Z., Wang, A., & Cai, W. (2015). Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite. Bulletin of Materials Science, 38(3), 611–616.CrossRefGoogle Scholar
  24. 24.
    Gong, N., Shao, K., Feng, W., Lin, Z., Liang, C., & Sun, Y. (2011). Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere, 83(4), 510–516.CrossRefGoogle Scholar
  25. 25.
    Zhou, H., Wang, X., Zhou, Y., Yao, H., & Ahmad, F. (2014). Evaluation of the toxicity of ZnO nanoparticles to Chlorella vulgaris by use of the chiral perturbation approach. Analytical and Bioanalytical Chemistry, 406(15), 3689–3695.CrossRefGoogle Scholar
  26. 26.
    Oukarroum, A., Bras, S., Perreault, F., & Popovic, R. (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 78, 80–85.CrossRefGoogle Scholar
  27. 27.
    Ji, J., Long, Z., & Lin, D. (2011). Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 170(2), 525–530.CrossRefGoogle Scholar
  28. 28.
    Qian, H., Li, J., Pan, X., Sun, L., Lu, T., Ran, H., & Fu, Z. (2011). Combined effect of copper and cadmium on heavy metal ion bioaccumulation and antioxidant enzymes induction in Chlorella vulgaris. Bulletin of Environmental Contamination and Toxicology, 87(5), 512–516.CrossRefGoogle Scholar
  29. 29.
    Rai, U., Singh, N., Upadhyay, A., & Verma, S. (2013). Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresource Technology, 136, 604–609.CrossRefGoogle Scholar
  30. 30.
    Wang, H. Y., Zeng, X. B., Guo, S. Y., & Li, Z. T. (2008). Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris. Bioelectromagnetics, 29(1), 39–46.CrossRefGoogle Scholar
  31. 31.
    Mallick, N. (2004). Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. Journal of Plant Physiology, 161(5), 591–597.CrossRefGoogle Scholar
  32. 32.
    Chongpraditnun, P., Mori, S., & Chino, M. (1992). Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant and Cell Physiology, 33(3), 239–244.CrossRefGoogle Scholar
  33. 33.
    Gupta, D., Nicoloso, F., Schetinger, M., Rossato, L., Pereira, L., Castro, G., Srivastava, S., & Tripathi, R. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 172(1), 479–484.CrossRefGoogle Scholar
  34. 34.
    Dazy, M., Masfaraud, J.-F., & Ferard, J.-F. (2009). Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere, 75(3), 297–302.CrossRefGoogle Scholar
  35. 35.
    Qian, H., Chen, W., Li, J., Wang, J., Zhou, Z., Liu, W., & Fu, Z. (2009). The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquatic Toxicology, 92(4), 250–257.CrossRefGoogle Scholar
  36. 36.
    Gao, Q., & Tam, N. (2011). Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress. Chemosphere, 82(3), 346–354.CrossRefGoogle Scholar
  37. 37.
    di Toppi, L. S., Musetti, R., Marabottini, R., Corradi, M. G., Vattuone, Z., Favali, M. A., & Badiani, M. (2004). Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium. Functional Plant Biology, 31(4), 329–338.CrossRefGoogle Scholar
  38. 38.
    Assche, F. V., & Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant, Cell & Environment, 13(3), 195–206.CrossRefGoogle Scholar
  39. 39.
    Frueh, J., Gai, M., Yang, Z., & He, Q. (2014). Influence of polyelectrolyte multilayer coating on the degree and type of biofouling in freshwater environment. Journal of Nanoscience and Nanotechnology, 14(6), 4341–4350.CrossRefGoogle Scholar
  40. 40.
    Cooper, S. P., Finlay, J. A., Cone, G., Callow, M. E., Callow, J. A., & Brennan, A. B. (2011). Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. Biofouling, 27(8), 881–892.CrossRefGoogle Scholar
  41. 41.
    Voulvoulis, N., Scrimshaw, M., & Lester, J. (1999). Alternative antifouling biocides. Applied Organometallic Chemistry, 13(3), 135–143.CrossRefGoogle Scholar
  42. 42.
    Chaudhury, M. K., Finlay, J. A., Chung, J. Y., Callow, M. E., & Callow, J. A. (2005). The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane) (PDMS) model networks. Biofouling, 21(1), 41–48.CrossRefGoogle Scholar
  43. 43.
    Xiao, L., Thompson, S. E., Rohrig, M., Callow, M. E., Callow, J. A., Grunze, M., & Rosenhahn, A. (2013). Hot embossed microtopographic gradients reveal morphological cues that guide the settlement of zoospores. Langmuir, 29(4), 1093–1099.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Plant Biology, Faculty of Natural SciencesUniversity of TabrizTabrizIran
  2. 2.Research Institute for Fundamental Sciences (RIFS)University of TabrizTabrizIran
  3. 3.Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
  4. 4.Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran

Personalised recommendations