Advertisement

BioNanoScience

, Volume 8, Issue 3, pp 778–789 | Cite as

Optimization of Chitosan-Gelatin Nanofibers Production: Investigating the Effect of Solution Properties and Working Parameters on Fibers Diameter

  • Nafise Amiri
  • Zohreh Rozbeh
  • Toktam Afrough
  • Sayyed Abolghasem Sajadi Tabassi
  • Ali Moradi
  • Jebrail MovaffaghEmail author
Article
  • 153 Downloads

Abstract

Electrospinning of chitosan-gelatin, using organic solvents, have already been reported. This study was designed to fabricate, characterize, and optimize electrospun chitosan-gelatin nanofibrous membranes using acetic acid as a more safe alternative aqueous solvent. Series of 90/10, 80/20, 70/30, 60/40, and 50/50 ratios of chitosan and gelatin were prepared using aqueous acetic acid as solvent. Blend solutions were electrospun after adding polyethylene oxide (PEO) to facilitate the electrospinning process. The effects of solution properties as well as the operating parameters on the architecture of the electrospun chitosan-gelatin nanofibers were investigated through evaluation of the electrical conductivity, viscosity, morphology, Fourier transform infrared spectroscopy (FTIR), mechanical properties, and hydrophilicity. Uniform beadless nanofibrous hydrophilic mats were fabricated with average fiber diameters from 229.79 ± 41.45 to 308.66 ± 50.03 nm. Concentration was the main parameter among all solution properties in controlling nanofiber diameter. The fiber diameters decreased with increasing the voltage, decreasing the feed rate, and increasing the needle to collector distance up to a certain amount. The interactions between the components of the blend solutions were confirmed by FTIR spectra. The Young’s moduli of all chitosan-gelatin blend nanofibers were higher than the chitosan nanofibers and increased significantly after cross-linking (P < 0.05). Chitosan-gelatin blends with different ratios of each biopolymer can be electrospun using acetic acid as an aqueous solvent and addition of PEO to yield hydrophilic membranes with uniform and beadless nanofibers. The architectural similarity of the nanofibrous chitosan-gelatin mats to natural ECM makes them great candidates for different biomedical applications.

Keywords

Electrospinning Chitosan Gelatin Nanofibrous membrane Aqueous solvent 

Notes

Acknowledgements

This study was part of a research project which was financially supported by the vice chancellor for research of Mashhad University of Medical Sciences (No. 931634).

References

  1. 1.
    Garg, K., & Bowlin, G. L. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(1), 013403.  https://doi.org/10.1063/1.3567097.CrossRefGoogle Scholar
  2. 2.
    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347.  https://doi.org/10.1016/j.biotechadv.2010.01.004.CrossRefGoogle Scholar
  3. 3.
    La Mantia, F. P., Morreale, M., Botta, L., Mistretta, M. C., Ceraulo, M., & Scaffaro, R. (2017). Degradation of polymer blends: A brief review. Polym Degrad Stab 145 (Supplement C), 79–92.  https://doi.org/10.1016/j.polymdegradstab.2017.07.011.CrossRefGoogle Scholar
  4. 4.
    Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Adv Drug Del Rev, 97, 4–27.  https://doi.org/10.1016/j.addr.2015.11.001.CrossRefGoogle Scholar
  5. 5.
    Su, K., & Wang, C. (2015). Recent advances in the use of gelatin in biomedical research. Biotechnology Letters, 37(11), 2139–2145.  https://doi.org/10.1007/s10529-015-1907-0.CrossRefGoogle Scholar
  6. 6.
    Frantz, C., Stewart, K. M., & Weaver, V. M. (2010). The extracellular matrix at a glance. Journal of Cell Science, 123(24), 4195–4200.  https://doi.org/10.1242/jcs.023820.CrossRefGoogle Scholar
  7. 7.
    Pandey, A. R., Singh, U. S., Momin, M., & Bhavsar, C. (2017). Chitosan: Application in tissue engineering and skin grafting. Journal of Polymer Research, 24(8), 125.  https://doi.org/10.1007/s10965-017-1286-4.CrossRefGoogle Scholar
  8. 8.
    Ahmed, S., & Ikram, S. (2016). Chitosan based scaffolds and their applications in wound healing. Achiev Life Sci, 10(1), 27–37.  https://doi.org/10.1016/j.als.2016.04.001.CrossRefGoogle Scholar
  9. 9.
    Mirzaei, E., Faridi-Majidi, R., Shokrgozar, M. A., & Asghari Paskiabi, F. (2014). Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold. Nanomed J, 1(3), 137–146.  https://doi.org/10.7508/nmj.2014.03.003.CrossRefGoogle Scholar
  10. 10.
    Dai, T., Tanaka, M., Huang, Y.-Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857–879.  https://doi.org/10.1586/eri.11.59.CrossRefGoogle Scholar
  11. 11.
    Haider, S., Al-Masry, W. A., Bukhari, N., & Javid, M. (2010). Preparation of the chitosan containing nanofibers by electrospinning chitosan–gelatin complexes. Polymer Engineering & Science, 50(9), 1887–1893.  https://doi.org/10.1002/pen.21721.CrossRefGoogle Scholar
  12. 12.
    Wang, S., & Zhao, G. (2012). Quantitative characterization of the electrospun gelatin–chitosan nanofibers by coupling scanning electron microscopy and atomic force microscopy. Materials Letters, 79, 14–17.  https://doi.org/10.1016/j.matlet.2012.03.044.CrossRefGoogle Scholar
  13. 13.
    Dhandayuthapani, B., Krishnan, U. M., & Sethuraman, S. (2010). Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 94B(1), 264–272.  https://doi.org/10.1002/jbm.b.31651.CrossRefGoogle Scholar
  14. 14.
    Pezeshki-Modaress, M., Zandi, M., & Mirzadeh, H. (2015). Fabrication of gelatin/chitosan nanofibrous scaffold: Process optimization and empirical modeling. Polymer International, 64(4), 571–580.  https://doi.org/10.1002/pi.4843.CrossRefGoogle Scholar
  15. 15.
    Charernsriwilaiwat, N., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., & Supaphol, P. (2010). Preparation and characterization of chitosan-hydroxybenzotriazole/polyvinyl alcohol blend nanofibers by the electrospinning technique. Carbohydrate Polymers, 81(3), 675–680.  https://doi.org/10.1016/j.carbpol.2010.03.031.CrossRefGoogle Scholar
  16. 16.
    Jafari, J., Emami, S. H., Samadikuchaksaraei, A., Bahar, M. A., & Gorjipour, F. (2011). Electrospun chitosan-gelatin nanofiberous scaffold: Fabrication and in vitro evaluation. Bio-medical Materials and Engineering, 21(2), 99–112.  https://doi.org/10.3233/bme-2011-0660.CrossRefGoogle Scholar
  17. 17.
    Zheng, Y., & Wyman, I. (2016). Supramolecular nanostructures based on Cyclodextrin and poly(ethylene oxide): Syntheses, structural characterizations and applications for drug delivery. Polymers, 8(5), 198.CrossRefGoogle Scholar
  18. 18.
    Ma, L., Deng, L., & Chen, J. (2014). Applications of poly(ethylene oxide) in controlled release tablet systems: A review. Drug Development and Industrial Pharmacy, 40(7), 845–851.  https://doi.org/10.3109/03639045.2013.831438.CrossRefGoogle Scholar
  19. 19.
    Frohbergh, M. E., Katsman, A., Botta, G. P., Lazarovici, P., Schauer, C. L., Wegst, U. G., & Lelkes, P. I. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 33(36), 9167–9178.  https://doi.org/10.1016/j.biomaterials.2012.09.009.CrossRefGoogle Scholar
  20. 20.
    Li, Q., Wang, X., Lou, X., Yuan, H., Tu, H., Li, B., & Zhang, Y. (2015). Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydrate Polymers, 130, 166–174.  https://doi.org/10.1016/j.carbpol.2015.05.039.CrossRefGoogle Scholar
  21. 21.
    Chen, Z., Mo, X., He, C., & Wang, H. (2008). Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydrate Polymers, 72(3), 410–418.  https://doi.org/10.1016/j.carbpol.2007.09.018.CrossRefGoogle Scholar
  22. 22.
    Acevedo, C. A., Díaz-Calderón, P., López, D., & Enrione, J. (2015). Assessment of gelatin–chitosan interactions in films by a chemometrics approach. CyTA Journal of Food, 13(2), 227–234.  https://doi.org/10.1080/19476337.2014.944570.CrossRefGoogle Scholar
  23. 23.
    Pakravan, M., Heuzey, M.-C., & Ajji, A. (2011). A fundamental study of chitosan/PEO electrospinning. Polymer, 52(21), 4813–4824.  https://doi.org/10.1016/j.polymer.2011.08.034.CrossRefGoogle Scholar
  24. 24.
    Rahman, M. A., Khan, M. A., & Tareq, S. M. (2010). Preparation and characterization of polyethylene oxide (PEO)/gelatin blend for biomedical application: Effect of gamma radiation. Journal of Applied Polymer Science, 117(4), 2075–2082.  https://doi.org/10.1002/app.32034.CrossRefGoogle Scholar
  25. 25.
    Rakkapao, N., Vao-soongnern, V., Masubuchi, Y., & Watanabe, H. (2011). Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction. Polymer, 52(12), 2618–2627.  https://doi.org/10.1016/j.polymer.2011.03.044.CrossRefGoogle Scholar
  26. 26.
    Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., & Ndesendo, V. M. K. (2013). A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials, 2013(22).  https://doi.org/10.1155/2013/789289.CrossRefGoogle Scholar
  27. 27.
    Bizarria, M. T. M., d'Ávila, M. A., & Mei, L. H. I. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Brazilian Journal of Chemical Engineering, 31, 57–68.CrossRefGoogle Scholar
  28. 28.
    Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., & Koocheki, A. (2016). Optimization of elecrospinning process of zein using central composite design. Fiber Polym, 17(5), 769–777.  https://doi.org/10.1007/s12221-016-6064-0.CrossRefGoogle Scholar
  29. 29.
    Veleirinho, B., Rei, M. F., & Lopes-Da-Silva, J. A. (2008). Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. Journal of Polymer Science Part B: Polymer Physics, 46(5), 460–471.  https://doi.org/10.1002/polb.21380.CrossRefGoogle Scholar
  30. 30.
    Okutan, N., Terzi, P., & Altay, F. (2014). Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids, 39, 19–26.  https://doi.org/10.1016/j.foodhyd.2013.12.022.CrossRefGoogle Scholar
  31. 31.
    Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer, 48(23), 6913–6922.  https://doi.org/10.1016/j.polymer.2007.09.017.CrossRefGoogle Scholar
  32. 32.
    Haider A, Haider S,Kang I-K (2015) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. ARAB J CHEM.  https://doi.org/10.1016/j.arabjc.2015.11.015 CrossRefGoogle Scholar
  33. 33.
    Han, W., Minhao, L., Xin, C., Junwei, Z., Xindu, C., & Ziming, Z. (2015). Study of deposition characteristics of multi-nozzle near-field electrospinning in electric field crossover interference conditions. AIP Advances, 5(4), 041302.  https://doi.org/10.1063/1.4902173.CrossRefGoogle Scholar
  34. 34.
    Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X.-X., Chen, J.-Y., Ye, J., & Gou, Z. (2011). Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydrate Polymers, 84(1), 239–246.  https://doi.org/10.1016/j.carbpol.2010.11.031.CrossRefGoogle Scholar
  35. 35.
    Cebi, N., Durak, M. Z., Toker, O. S., Sagdic, O., & Arici, M. (2016). An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chemistry, 190(Supplement C), 1109–1115.  https://doi.org/10.1016/j.foodchem.2015.06.065.CrossRefGoogle Scholar
  36. 36.
    Jalaja, K., & James, N. R. (2015). Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules, 73, 270–278.  https://doi.org/10.1016/j.ijbiomac.2014.11.018.CrossRefGoogle Scholar
  37. 37.
    Reddy, N., Reddy, R., & Jiang, Q. (2015). Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 33(6), 362–369.  https://doi.org/10.1016/j.tibtech.2015.03.008.CrossRefGoogle Scholar
  38. 38.
    V, J. L., Wei, S., & S, C. L. (2008). Crosslinked, electrospun chitosan–poly(ethylene oxide) nanofiber mats. Journal of Applied Polymer Science, 109(2), 968–975.  https://doi.org/10.1002/app.28107.CrossRefGoogle Scholar
  39. 39.
    Schiffman, J. D., & Schauer, C. L. (2007). Cross-linking chitosan nanofibers. Biomacromolecules, 8(2), 594–601.  https://doi.org/10.1021/bm060804s.CrossRefGoogle Scholar
  40. 40.
    Jing, X., Mi, H. Y., Peng, J., Peng, X. F., & Turng, L. S. (2015). Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. Carbohydrate Polymers, 117, 941–949.  https://doi.org/10.1016/j.carbpol.2014.10.025.CrossRefGoogle Scholar
  41. 41.
    Denis, P. D., Ian, S. M., Malika, A., & William, M. G. (2010). Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Journal of Biomaterials Applications, 26(3), 327–347.  https://doi.org/10.1177/0885328210372148.CrossRefGoogle Scholar
  42. 42.
    Tallawi, M., Rosellini, E., Barbani, N., Cascone, M. G., Rai, R., Saint-Pierre, G., & Boccaccini, A. R. (2015). Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: A review. J R Soc Interface, 12(108), 20150254.  https://doi.org/10.1098/rsif.2015.0254.CrossRefGoogle Scholar
  43. 43.
    Sousa, I., Mendes, A., & Bártolo, P. J. (2013). PCL scaffolds with collagen bioactivator for applications in tissue engineering. Procedia Engineer 59 (Supplement C), 279–284.  https://doi.org/10.1016/j.proeng.2013.05.122.CrossRefGoogle Scholar
  44. 44.
    Halake, K., Kim, H. J., Birajdar, M., Kim, B. S., Bae, H., Lee, C., Kim, Y. J., Kim, S., Ahn, S., An, S. Y., Jung, S. H., & Lee, J. (2016). Recently developed applications for natural hydrophilic polymers. J Ind Eng Chem 40 (Supplement C), 16–22.  https://doi.org/10.1016/j.jiec.2016.06.011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Targeted Drug Delivery Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  2. 2.Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran
  3. 3.Department of Chemistry, Faculty of ScienceFerdowsi University of MashhadMashhadIran
  4. 4.Orthopedic Research CenterMashhad University of Medical SciencesMashhadIran
  5. 5.Department of Pharmaceutics, School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations