BioNanoScience

, Volume 8, Issue 1, pp 367–372 | Cite as

Analysis of Apparent Catalytic Parameters of Multiple Molecular Forms of Human Plasma Butyrylcholinesterase by Activity Gel-Scanning Following Non-denaturing Electrophoresis

Article
  • 25 Downloads

Abstract

Butyrylcholinesterase (BChE) in human plasma is composed of four molecular forms: C1 (monomer); C2, covalent conjugate between BChE monomer and albumin; C3, dimer; and C4, tetramer, the major form. Catalytic parameters of molecular forms were estimated at high substrate concentration after non-denaturing polyacrylamide gel electrophoresis by activity gel-scanning densitometry, using a chromogenic substrate (butyrylthiocholine (BTC)). Though catalytic parameters Kss (dissociation of enzyme substrate complex at high substrate concentration) and catalytic constants are apparent (phenomenological) parameters, results indicate that the four molecular forms of human BChE do not display significant differences in their catalytic behavior at high BTC concentration.

Keywords

Butyrylcholinesterase Molecular forms Immobilized-enzyme kinetics Gel scanning 

Abbreviations

AChE

Acetylcholinesterase

BChE

Butyrylcholinesterase

BTC

Butyrylthiocholine

PAG

Polyacrylamide gel

PAGE

Polyacrylamide gel electrophoresis

Notes

Acknowledgements

This work was supported by the Russian Science Foundation (project # 17-14-01097) to PM.

References

  1. 1.
    Nicolet, Y., Lockridge, O., Masson, P., Fontecilla-Camps, J. C., & Nachon, F. (2003). Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. The Journal of Biological Chemistry, 278(42), 41141–41147.  https://doi.org/10.1074/jbc.M210241200.CrossRefGoogle Scholar
  2. 2.
    Masson, P., Carletti, E., & Nachon, F. (2009). Structure, activities and biomedical applications of human Butyrylcholinesterase. Protein and Peptide Letters, 16(10), 1215–1224.  https://doi.org/10.2174/092986609789071207.CrossRefGoogle Scholar
  3. 3.
    Lockridge, O. (2015). Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacology & Therapeutics, 148, 34–46.  https://doi.org/10.1016/j.pharmthera.2014.11.011.CrossRefGoogle Scholar
  4. 4.
    Lockridge, O., Eckerson, H. W., & La Du, B. N. (1979). Interchain disulfide bonds and subunit organization in human serum cholinesterase. The Journal of Biological Chemistry, 254(17), 8324–8330.Google Scholar
  5. 5.
    Masson, P. (1979). Multiple molecular forms of human plasma butyrylcholinesterase I. Apparent molecular parameters and broad pattern of the quaternary structure. Biochimica et Biophysica Acta (BBA) - Protein Structure, 578(2), 493–504.  https://doi.org/10.1016/0005-2795(79)90179-X.CrossRefGoogle Scholar
  6. 6.
    Masson, P. (1989). A naturally-occurring molecular-form of human-plasma cholinesterase is an albumin conjugate. Biochimica et Biophysica Acta, 998(3), 258–266.  https://doi.org/10.1016/0167-4838(89)90282-3.CrossRefGoogle Scholar
  7. 7.
    Saxena, A., Hur, R. S., Luo, C., & Doctor, B. P. (2003). Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain. Biochemistry, 42(51), 15292–15299.  https://doi.org/10.1021/bi030150x.CrossRefGoogle Scholar
  8. 8.
    Schopfer LM, Delacour H, Masson P, Leroy J, Krejci E, Lockridge O (2017) The C5 variant of the butyrylcholinesterase tetramer includes a noncovalently bound 60 kDa lamellipodin fragment. Molecules 22 (7). doi: https://doi.org/10.3390/molecules22071083.
  9. 9.
    Masson, P., Froment, M.-T., Bartels, C. F., & Lockridge, O. (1996). Asp70 in the peripheral anionic site of human butyrylcholinesterase. European Journal of Biochemistry, 235(1–2), 36–48.  https://doi.org/10.1111/j.1432-1033.1996.00036.x/pdf.CrossRefGoogle Scholar
  10. 10.
    Masson, P., Legrand, P., Bartels, C. F., Froment, M.-T., Schopfer, L. M., & Lockridge, O. (1997). Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase. Biochemistry, 36(8), 2266–2277.  https://doi.org/10.1021/bi962484a.CrossRefGoogle Scholar
  11. 11.
    Nachon, F., Nicolet, Y., Viguie, N., Masson, P., Fontecilla-Camps, J. C., & Lockridge, O. (2002). Engineering of a monomeric and low-glycosylated form of human butyrylcholinesterase. European Journal of Biochemistry, 269, 630–637.  https://doi.org/10.1046/j.0014-2956.2001.02692.x.CrossRefGoogle Scholar
  12. 12.
    Rodbard, D., & Chrambach, A. (1971). Estimation of molecular radius, free mobility, and valence using polyacrylamide gel electrophoresis. Analytical Biochemistry, 40(1), 95–134.  https://doi.org/10.1016/0003-2697(71)90086-8.CrossRefGoogle Scholar
  13. 13.
    Juul, P. (1968). Human plasma cholinesterase isoenzymes. Clinica Chimica Acta, 19(2), 205–213.  https://doi.org/10.1016/0009-8981(68)90327-6.CrossRefGoogle Scholar
  14. 14.
    Karnovsky, M. J., & Roots, L. (1964). A “direct-coloring” thiocholine method for Cholinesterases. The Journal of Histochemistry and Cytochemistry, 12, 219–221.  https://doi.org/10.1177/12.3.219.CrossRefGoogle Scholar
  15. 15.
    Chiu, Y. C., Tripathi, R. K., & O'Brien, R. D. (1972). A gel-scanning method for kinetic studies on an acetylcholinesterase isozyme. Analytical Biochemistry, 45(2), 480–487.  https://doi.org/10.1016/0003-2697(72)90210-2.CrossRefGoogle Scholar
  16. 16.
    Kobayashi, T., & Laidler, K. J. (1973). Kinetic analysis for solid-supported enzymes. Biochimica et Biophysica Acta, 302(1), 1–12.  https://doi.org/10.1016/0005-2744(73)90002-8.CrossRefGoogle Scholar
  17. 17.
    Sundaram, P. V., Tweedale, A., & Laidler, K. J. (1970). Kinetic laws for solid-supported enzymes. Canadian Journal of Chemistry, 48(10), 1498–1504.  https://doi.org/10.1139/v70-245.CrossRefGoogle Scholar
  18. 18.
    Laidler KJ, Bunting PS (1973) The chemical kinetics of enzyme reactions. 2nd edn. Oxford University Press.Google Scholar
  19. 19.
    Laidler, K. J., & Bunting, P. S. (1980). The kinetics of immobilized enzyme systems. Methods in Enzymology, 64, 227–248.  https://doi.org/10.1016/s0076-6879(80)64011-7.CrossRefGoogle Scholar
  20. 20.
    Ngo, T. T., & Laidler, K. J. (1975). Immobilized electric eel acetylcholinesterase. I. Kinetics of acetylcholinesterase trapped in polyacrylamide membranes. Biochimica et Biophysica Acta, 377(2), 303–316.  https://doi.org/10.1016/0005-2744(75)90312-5.CrossRefGoogle Scholar
  21. 21.
    Ngo, T. T., & Laidler, K. J. (1975). Immobilized electric eel acetylcholinesterasemii. II. Flow kinetics of acetylcholinesterase chemically attached to nylon tubing. Biochimica et Biophysica Acta, 377(2), 317–330.  https://doi.org/10.1016/0005-2744(75)90313-7.CrossRefGoogle Scholar
  22. 22.
    Ngo, T. T., & Laidler, K. J. (1978). Temperature and pH effects with immobilized electric eel acetylcholinesterase. Biochimica et Biophysica Acta, 525(1), 93–102.  https://doi.org/10.1016/0005-2744(78)90203-6.CrossRefGoogle Scholar
  23. 23.
    Degani, Y., & Miron, T. (1970). Immobilization of cholinesterase in cross-linked polyacrylamide. Biochimica et Biophysica Acta, 212(2), 362–364.  https://doi.org/10.1016/0005-2744(70)90219-6.CrossRefGoogle Scholar
  24. 24.
    Matsuzaki, S., Iwamura, K., Katsunuma, T., & Kamiguchi, H. (1980). Separation of serum cholinesterase isozymes by an improved polyacrylamide gel electrophoresis and its application for the study of liver diseases (part I). Gastroenterologia Japonica, 15(1), 33–40.  https://doi.org/10.1007/BF02773702.Google Scholar
  25. 25.
    Velan, B., Grosfeld, H., Kronman, C., Leitner, M., Gozes, Y., Lazar, A., Flashner, Y., Marcus, D., Cohen, S., & Shafferman, A. (1991). The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580----Ala mutant. The Journal of Biological Chemistry, 266(35), 23977–23984.Google Scholar
  26. 26.
    Larrimore, K. E., Kazan, I. C., Kannan, L., Kendle, R. P., Jamal, T., Barcus, M., Bolia, A., Brimijoin, S., Zhan, C. G., Ozkan, S. B., & Mor, T. S. (2017). Plant-expressed cocaine hydrolase variants of butyrylcholinesterase exhibit altered allosteric effects of cholinesterase activity and increased inhibitor sensitivity. Scientific Reports, 7(1), 10419.  https://doi.org/10.1038/s41598-017-10571-z.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Neuropharmacology LaboratoryKazan Federal UniversityKazanRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations