BioNanoScience

, Volume 8, Issue 1, pp 337–343 | Cite as

Imidazolium p-tert-Butylthiacalix[4]arene Amphiphiles—Aggregation in Water Solutions and Binding with Adenosine 5′-Triphosphate Dipotassium Salt

  • Vladimir A. Burilov
  • Diana A. Mironova
  • Regina R. Ibragimova
  • Vladimir G. Evtugyn
  • Yurii N. Osin
  • Svetlana E. Solovieva
  • Igor S. Antipin
Article
  • 88 Downloads

Abstract

Aggregation properties of water-soluble cationic amphiphilic p-tert-butylthiacalix[4]arene derivatives adopting 1,3-alternate stereoisomeric form with methylimidazolyl headgroups were studied. It was found that derivatives 1 and 2 form stable aggregates in water solutions. The size and shape of aggregates were defined using DLS and TEM techniques. Critical aggregation concentration (CAC) of methylimidazolyl derivatives was calculated using dye micellization method. It was found that correct CAC determination of cationic amphiphiles using anionic xanthene dyes should be considered carefully in respect with electrostatic interactions. Using indicator displacement procedure, DLS studies, and 31P NMR spectroscopy, it was found that macrocycles 1 and 2 bind with ATP with 1:1 stoichiometry. It was found that ATP causes eosin Y release from binary thiacalixarene-eosin Y system up from 3 to 12 μM of ATP in the case of macrocycles 1 and 2, respectively.

Keywords

Thiacalix[4]arene Imidazolium salts Supramolecular amphiphile Eosin Y Pyrene ATP 

References

  1. 1.
    Gale, P. A. (2010). Anion receptor chemistry: highlights from 2008 and 2009. Chemical Society Reviews, 39, 3746–3771.  https://doi.org/10.1039/c001871f.CrossRefGoogle Scholar
  2. 2.
    Kim, S. K., & Sessler, J. L. (2010). Ion pair receptors. Chemical Society Reviews, 39, 3784–3809.  https://doi.org/10.1039/C002694H.CrossRefGoogle Scholar
  3. 3.
    Li, A. F., Wang, J. H., Wang, F., & Jiang, Y. B. (2010). Anion complexation and sensing using modified urea and thiourea-based receptors. Chemical Society Reviews, 39, 3729–3745.  https://doi.org/10.1039/b926160p.CrossRefGoogle Scholar
  4. 4.
    Zhou, Y., Xu, Z., & Yoon, Y. (2011). Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH: highlighted research during 2004–2010. Chemical Society Reviews, 40, 2222–2235.  https://doi.org/10.1039/c0cs00169d.CrossRefGoogle Scholar
  5. 5.
    Ng, S., Lim, H. S., Ma, Q., & Gao, Z. (2016). Optical aptasensors for adenosine triphosphate. Theranostics, 6(10), 1683–1702.  https://doi.org/10.7150/thno.15850.CrossRefGoogle Scholar
  6. 6.
    Gourine, A. V., Llaudet, E., Dale, N., & Spyer, K. M. (2005). ATP is a mediator of chemosensory transduction in the central nervous system. Nature, 436, 108–111.  https://doi.org/10.1038/nature03690.CrossRefGoogle Scholar
  7. 7.
    Wenz, G., Han, B. H., & MSller, A. (2006). Cyclodextrin rotaxanes and polyrotaxanes. Chemical Reviews, 106, 782–817.  https://doi.org/10.1021/cr970027+.CrossRefGoogle Scholar
  8. 8.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., & Isaacs, L. (2005). The cucurbit[n]uril family. Angewandte Chemie, 44(31), 4844–4870.  https://doi.org/10.1002/anie.200460675.CrossRefGoogle Scholar
  9. 9.
    Wang, K., Yang, Y. W., & Zhang, S. X. A. (2012). Research progress on the synthesis of pillar[n]arenes and their host-guest chemistry. Chemical Journal of Chinese Universities, 33(2), 1–13.  https://doi.org/10.3969/j.issn.0251-0790.2012.01.001.Google Scholar
  10. 10.
    Solovieva, S. E., Burilov, V. A., & Antipin, I. S. (2017). Thiacalix[4]arene’s lower rim derivatives: synthesis and supramolecular properties. Macroheterocycles, 10(2), 134–146.  https://doi.org/10.6060/mhc170512a.CrossRefGoogle Scholar
  11. 11.
    Kumar, R., Lee, Y. O., Bhalla, V., Kumar, M., & Kim, J. S. (2014). Recent developments of thiacalixarene based molecular motifs. Chemical Society Reviews, 43, 4824–4870.  https://doi.org/10.1039/c4cs00068d.CrossRefGoogle Scholar
  12. 12.
    Giuliani, M., Morbioli, I., Sansone, F., & Casnati, A. (2015). Moulding calixarenes for biomacromolecule targeting. Chemical Communications, 51, 14140–14159.  https://doi.org/10.1039/C5CC05204A.CrossRefGoogle Scholar
  13. 13.
    Shinkai, S., Mori, S., Koreishi, H., Tsubaki, T., & Manabe, O. (1986). Hexasulfonated calix[6]arene derivatives: a new class of catalysts, surfactants, and host molecules. JACS, 108, 2409–2416.  https://doi.org/10.1021/ja00269a045.CrossRefGoogle Scholar
  14. 14.
    Burilov, V. A., Ibragimova, R. R., Gafiatullin, B. H., Nugmanov, R. I., Solovieva, S. E., & Antipin, I. S. (2017). Unusual reactivity of aliphatic and aromatic amines with bromoalkyl derivatives of thiacalix[4]arene in 1, 3- alternate stereoisomeric form. Macroheterocycles, 10(2), 215–220.  https://doi.org/10.6060/mhc170514b.CrossRefGoogle Scholar
  15. 15.
    Zh, X., Kim, S. K., & Yoon, J. (2010). Revisit to imidazolium receptors for the recognition of anions: Highlighted research during 2006–2009. Chemical Society Reviews, 39, 1457–1466.  https://doi.org/10.1039/b918937h.CrossRefGoogle Scholar
  16. 16.
    Hardacre, C., Holbrey, J. D., McMath, S. E. J. D., Bowron, T., & Soper, A. K. (2003). Structure of molten 1, 3-dimethylimidazolium chloride using neutron diffraction. The Journal of Chemical Physics, 118, 273–278.  https://doi.org/10.1063/1.1523917.CrossRefGoogle Scholar
  17. 17.
    Armarego, W. L. F., & Chai, C. L. L. (2009). Purification of laboratory chemicals. New York: Elsevier.Google Scholar
  18. 18.
    Souza, B. S., Leopoldino, E. S., Tondo, D. W., Dupont, J., & Nome, F. (2012). Imidazolium-based zwitterionic surfactant: a new amphiphilic Pd nanoparticle stabilizing agent. Langmuir, 28, 833–840.  https://doi.org/10.1021/la203501f.CrossRefGoogle Scholar
  19. 19.
    Casal-Dujat, L., Rodrigues, M., Yague, A., Calpena, A. C., Amabilino, D. B., Gonzalez-Linares, J., Borras, M., & Perez-García, L. (2012). Gemini imidazolium amphiphiles for the synthesis, stabilization, and drug delivery from gold nanoparticles. Langmuir, 28, 2368–2381.  https://doi.org/10.1021/la203601n.CrossRefGoogle Scholar
  20. 20.
    Hopkinson, M. N., Richter, C., Schedler, M., & Glorius, F. (2014). An overview of N-heterocyclic carbenes. Nature, 51, 485–496.  https://doi.org/10.1038/nature13384.CrossRefGoogle Scholar
  21. 21.
    Mitchell, D. J., Ninham, B. W., & Israelachvili, J. N. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions, 2(72), 1525–1568.  https://doi.org/10.1039/F29767201525.Google Scholar
  22. 22.
    Rosen, M. J. (2004). Surfactants and interfacial phenomena. John Wiley & Sons Ltd: Hoboken.CrossRefGoogle Scholar
  23. 23.
    Ibragimova, R. R., Burilov, V. A., Aymetdinov, A. R., Mironova, D. A., Evtugyn, V. G., Osin, Y. N., Solovieva, S. E., & Antipin, I. S. (2016). Polycationic derivatives of p-tert-butylthiacalix[4]arene in 1,3-alternate stereoisomeric form: new DNA condensing agents. Macroheterocycles, 9(4), 433–441.  https://doi.org/10.6060/mhc161180b.CrossRefGoogle Scholar
  24. 24.
    Burilov, V. A., Mironova, D. A., Ibragimova, R. R., Nugmanov, R. I., Solovieva, S. E., & Antipin, I. S. (2017). Detection of sulfate surface-active substances via fluorescentresponse using new amphiphilic thiacalix[4]arenes bearing cationicheadgroups with eosin Y dyeV. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 515, 41–49.  https://doi.org/10.1016/j.colsurfa.2016.12.007.CrossRefGoogle Scholar
  25. 25.
    Hunter, R. J. (1987). Foundations of colloid science. Oxford: Oxford University Press.Google Scholar
  26. 26.
    Patist, A., Bhagwat, S. S., Penfield, K. W., Aikens, P., & Shah, D. O. (2000). On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. Journal of Surfactants and Detergents, 1, 53–58.  https://doi.org/10.1007/s11743-000-0113-4.CrossRefGoogle Scholar
  27. 27.
    Bilski, P., Dabestani, R., & Chignell, C. F. (1991). Influence of cationic surfactant on the photoprocesses of eosine and rose bengal in aqueous solution. The Journal of Physical Chemistry, 95, 5784–5791.  https://doi.org/10.1021/j100168a015.CrossRefGoogle Scholar
  28. 28.
    Pellosi, D. S., Estevão, B. M., Semensato, J., Severino, D., Baptista, M. S., Politi, M. J., Hioka, N., & Caetano, W. (2012). Photophysical properties and interactions of xanthene dyes in aqueous micelles. Journal of Photochemistry and Photobiology A, 247, 8–15.  https://doi.org/10.1016/j.jphotochem.2012.07.009.CrossRefGoogle Scholar
  29. 29.
    Ranganathan, R., Vautier-Giongo, C., & Bales, B. L. (2003). Toward a hydrodynamic description of bimolecular collisions in micelles. An experimental test of the effect of the nature of the quencher on the fluorescence quenching of pyrene in SDS micelles and in bulk liquids. The Journal of Physical Chemistry. B, 107, 10312–10318.  https://doi.org/10.1021/jp034346i.CrossRefGoogle Scholar
  30. 30.
    Haque, M., Das, A., Rakshit, A., & Moulik, S. (1996). Properties of mixed micelles of binary surfactant combinations. Langmuir, 12, 4084–4089.  https://doi.org/10.1021/la9403587.CrossRefGoogle Scholar
  31. 31.
    Wu, J., Kwon, B., Liu, W., Anslyn, E. W., Wang, P., & Kim, J. S. (2015). Chromogenic/fluorogenic ensemble chemosensing systems. Chemical Reviews, 115, 7893–7943.  https://doi.org/10.1021/cr500553d.CrossRefGoogle Scholar
  32. 32.
    You, L., Zha, D., & Anslyn, E. V. (2015). Recent advances in supramolecular analytical chemistry using optical sensing. Chemical Reviews, 115, 7840–7892.  https://doi.org/10.1021/cr5005524.CrossRefGoogle Scholar
  33. 33.
    Bojtár, M., Kozma, J., Szakács, Z., Hessz, D., Kubinyi, M., & Bitter, I. (2017). Pillararene-based fluorescent indicator displacement assay for the selective recognition of ATP. Sensors and Actuators B: Chemical, 248, 305–310.  https://doi.org/10.1016/j.snb.2017.03.163.CrossRefGoogle Scholar
  34. 34.
    Ramaiah, D., Neelakandan, P. P., Nair, A. K., & Avirah, R. R. (2010). Functional cyclophanes: promising hosts for optical biomolecular recognition. Chemical Society Reviews, 39, 4158–4168.  https://doi.org/10.1039/B920032K.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Organic ChemistryKazan Federal UniversityKazanRussian Federation
  2. 2.Interdisciplinary Center for Analytical MicroscopyKazan Federal UniversityKazanRussian Federation
  3. 3.A.E. Arbuzov Institute of Organic and Physical Chemistry of Kazan Scientific Centre of Russian Academy of ScienceKazanRussian Federation

Personalised recommendations