BioNanoScience

, Volume 8, Issue 1, pp 17–31 | Cite as

A Review on Mycosynthesis, Mechanism, and Characterization of Silver and Gold Nanoparticles

Article
  • 162 Downloads

Abstract

The study on green synthesis methods and on its potential applications for the mankind are in trend over 10 or more decades in the field of bioscience. A significant number of works have been done on the synthesis of nanoparticles by a microorganism which clearly shows the reliability of this method. Microbes can be used for synthesis process at much lower cost and in an environment-friendly approach. Among microbes, fungi can be mass grown in vitro, and they demonstrate an easy downstream processing for nanoparticles. Biosynthesized nanoparticles are the by-product of their resistance mechanism of the metal concerned, in different sizes and shapes. Also, presently, there are various methods of characterizing the metal nanoparticles. In this review, we will analyze aspects of mycosynthesis of silver and gold nanoparticles and their different characterization techniques. We are intended to give a clear picture of the importance and downside of this method.

Keywords

Mycosynthesis Silver nanoparticles (AgNPs) Gold nanoparticles (AuNPs) Mechanism Downstream process 

Notes

Acknowledgments

The authors wish to acknowledge the financial support provided by the UGC, India, under the program of the University of Potential Excellence (UPE).

References

  1. 1.
    Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Research Letters, 11, 98.CrossRefGoogle Scholar
  2. 2.
    Ramya, M., & Subapriya, M. S. (2012). Green synthesis of silver nanoparticles. International Journal of Pharma Medical and Biological Sciences, 1, 2278.Google Scholar
  3. 3.
    Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnol, 5, 1.Google Scholar
  4. 4.
    Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., & Sainkar, S. R. (2001a). Bioreduction of AuCl(4)(−) ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angewandte Chemie, International Edition, 40, 3585.CrossRefGoogle Scholar
  5. 5.
    Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces, B: Biointerfaces, 28, 313.CrossRefGoogle Scholar
  6. 6.
    Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., & Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces, B: Biointerfaces, 68, 88.CrossRefGoogle Scholar
  7. 7.
    Sadowski, Z., Maliszewska, I. H., Grochowalska, B., Polowczyk, I., & Koźlecki, T. (2008). Synthesis of silver nanoparticles using microorganisms. Materials Science - Poland, 26, 419.Google Scholar
  8. 8.
    Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 100, 501.CrossRefGoogle Scholar
  9. 9.
    Saravanan, M., & Nanda, A. (2010). Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces, B: Biointerfaces, 77, 214.CrossRefGoogle Scholar
  10. 10.
    Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Durán, N., & Rai, M. K. (2008). Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2, 243.CrossRefGoogle Scholar
  11. 11.
    Namasivayam, S. K. R., & Avimanyu. (2011). Silver nanoparticle synthesis from Lecanicillium lecanii and evalutionary treatment on cotton fabrics by measuring their improved antibacterial activity with antibiotics against Staphylococcus aureus (ATCC 29213) and E. coli (ATCC 25922) strains. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 190.Google Scholar
  12. 12.
    Du, L., Xu, Q., Huang, M., Xian, L., & Feng, J. X. (2015). Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Materials Chemistry and Physics, 160, 40.CrossRefGoogle Scholar
  13. 13.
    Banerjee, K., & Rai, V. R. (2016). Study on green synthesis of gold nanoparticles and their potential applications as catalysts. Journal of Cluster Science, 27, 1307.CrossRefGoogle Scholar
  14. 14.
    Banerjee, K., & Rai, V. R. (2015). Biofilm inhibitory activity of mycosynthesized silver nanoparticles against plaque forming bacteria Pseudomonas aeruginosa. Journal of Nanopharmaceutics and Drug Delivery, 3, 63.CrossRefGoogle Scholar
  15. 15.
    Banerjee, K., & Rai, V. R. (2015). Preliminary screening of mycochemicals in Aspergillus fischeri for synthesizing silver nanoparticles and their antioxidant activity. Materials Focus, 4, 252.CrossRefGoogle Scholar
  16. 16.
    Goswami, A. M., Sarkar, T. S., & Ghosh, S. (2013). An ecofriendly synthesis of silver nano-bioconjugates by Penicillium citrinum (MTCC9999) and its antimicrobial effect. AMB Express, 3, 16.CrossRefGoogle Scholar
  17. 17.
    Shugaba, A., Buba, F., Kolo, B. G., Nok, A. J., Ameh, D. A., & Lori, J. A. (2012). Uptake and reduction of hexavalent chromium by Aspergillus niger and Aspergillus parasiticus. Journal of Petroleum & Environmental Biotechnology, 3, 1.CrossRefGoogle Scholar
  18. 18.
    Moharrer, S., Mohammadi, B., Gharamohammadi, R. A., & Yargoli, M. (2012). Biological synthesis of silver nanoparticles by Aspergillus flavus, isolated from soil of Ahar copper mine. Indian Journal of Science and Technology, 5, 2443.Google Scholar
  19. 19.
    Bharathidasan, R., & Panneerselvam, A. (2012). Biosynthesis and characterization of silver nanoparticles using endophytic fungi Aspergillus concius, Penicillium janthinellum and Phomosis sp. International Journal of Pharmaceutical Sciences and Research, 3, 3163.Google Scholar
  20. 20.
    Devika, R., Elumalai, S., Arumugam, P., & Kasinathan, K. (2012). Biosynthesis of silver nanoparticles using the fungus Pleurotus ostreatus and their antibacterial activity. Journal of Nanoscience, Nanoengineering & Applications, 1, 1.Google Scholar
  21. 21.
    Rathna, G. S., Elavarasi, A., Peninal, S., Subramanian, J., Mano, G., & Kalaiselvam, M. (2013). Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its anti-dermatophytic activity. International Journal of Pharmaceutical and Biological Archive, 4, 481.Google Scholar
  22. 22.
    Raudabaugh, D. B., Tzolov, M. B., Calabrese, J. P., & Overton, B. E. (2013). Synthesis of silver nanoparticles by a Bryophilous rhizoctonia species. Nanomaterials and Nanotechnology, 3, 1.CrossRefGoogle Scholar
  23. 23.
    Birla, S. S., Gaikwad, S. C., Gade, A. K., & Rai, M. K. (2013). Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Scientific World Journal, 2013, 1.CrossRefGoogle Scholar
  24. 24.
    Mahmoud, M. A., Al-Sohaibani, S. A., Alothman, M. R., ARM, A. E.-A., & Eifan, S. A. (2013). Synthesis of extracellular silver nanoparticles using Fusarium semitectum (KSU-4) isolated from Saudi Arabia. Digest Journal of Nanomaterials and Biostructures, 8, 589.Google Scholar
  25. 25.
    Bathrinarayanan, P. V., Thangavelu, D., Muthukumarasamy, V. K., Munusamy, C., & Gurunathan, B. (2013). Biological synthesis and characterization of intracellular gold nanoparticles using biomass of Aspergillus fumigates. Bulletin of Materials Science, 36, 1201.CrossRefGoogle Scholar
  26. 26.
    Correa-Llantén, D. N., Muñoz-Ibacache, S. A., Castro, M. E., Muñoz, P. A., & Blamey, J. M. (2013). Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica. Microbial Cell Factories, 12, 75.CrossRefGoogle Scholar
  27. 27.
    Moghaddam, A. M., Namvar, F., Moniri, M., Tahir, P. M., Azizi, S., & Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules, 20, 16540.CrossRefGoogle Scholar
  28. 28.
    Siemieniec, J. (2013). Synthesis of silver and gold nanoparticles using methods of green chemistry. Chemistry, 67, 842.Google Scholar
  29. 29.
    Kulkarni, N., & Muddapur, U. (2014). Biosynthesis of metal nanoparticles: a review. Journal of Nanotechnology, 2014, 1.CrossRefGoogle Scholar
  30. 30.
    Ganesan, V., Deepa, B., Nima, P., & Astalakshmi, A. (2014). Bio-inspired synthesis of silver nanoparticles using leaves of Millingtonia hortensis L.F. International Journal of Advanced Biotechnology and Research, 5, 93.Google Scholar
  31. 31.
    Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. (2015). Green synthesis of metallic nanoparticles via biological entities. Journal of Materials, 8, 7278.CrossRefGoogle Scholar
  32. 32.
    Sintubin, L., De Windt, W., Dick, J., Mast, J., Van der Ha, D., Verstarete, W., & Boon, N. (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84, 741.CrossRefGoogle Scholar
  33. 33.
    Iravani, S. (2014). Bacteria in nanoparticle synthesis: current status and future prospects. International Scholarly Research Notices, 2014, 1.CrossRefGoogle Scholar
  34. 34.
    Narayanan, K. B., & Sakthivel, N. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1.CrossRefGoogle Scholar
  35. 35.
    Nangia, Y., Wangoo, N., Goyal, N., Shekhawat, G., & Suri, C. R. (2009). A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microbial Cell Factories, 8, 39.CrossRefGoogle Scholar
  36. 36.
    Bai, H. J., Zhang, Z. M., & Gong, J. (2006). Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnology Letters, 28, 1135.CrossRefGoogle Scholar
  37. 37.
    Bai, H. J., Zhang, Z. M., Guo, Y., & Yang, G. E. (2009). Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces B: Biointerfaces, 70, 142.CrossRefGoogle Scholar
  38. 38.
    Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., & Sainkar, S. (2001b). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix—a novel biological approach to nanoparticles synthesis. Nano Letters, 1, 515.CrossRefGoogle Scholar
  39. 39.
    Durán, N., Marcato, P. D., Alves, O. L., De Souza, G. I., & Esposito, E. J. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Nanobiotechnology, 3, 1.CrossRefGoogle Scholar
  40. 40.
    Krumov, N., Oder, S., Perner-Nochta, I., Angelov, A., & Posten, C. (2007). Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. Journal of Biotechnology, 132, 481.CrossRefGoogle Scholar
  41. 41.
    Bao, H., Hao, N., Yang, Y., & Zhao, D. (2010). Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Research, 3, 481.CrossRefGoogle Scholar
  42. 42.
    Apte, M., Girme, G., Bankar, A., Kumar, A. R., & Zinjarde, S. (2013). 3, 4-dihydroxy-l-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures. Journal of Nanbiotechnology, 11, 2.CrossRefGoogle Scholar
  43. 43.
    Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and Surfaces B: Biointerfaces, 121, 474.CrossRefGoogle Scholar
  44. 44.
    Singh, O. V. (2015). Bio-nanoparticles-biosynthesis and sustainable biotechnological implications. New Jersey: Wiley Blackwell.Google Scholar
  45. 45.
    Klaus, T., Joerger, R., Olsson, E., & Granqvist, C. G. (1999). Silver based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences, 96(24), 13611.CrossRefGoogle Scholar
  46. 46.
    Yong, P., Rowson, N. A., Farr, J. P. G., Harris, I. R., & Macaskie, L. E. (2002). Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnology and Bioengineering, 80, 369.CrossRefGoogle Scholar
  47. 47.
    Husseiny, S. M., Salah, T. A., & Anter, H. A. (2015). Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of Basic and Applied Sciences, 4, 225.CrossRefGoogle Scholar
  48. 48.
    Lengke, M., & Southam, G. (2006). Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochimica et Cosmochimica Acta, 70, 3646.CrossRefGoogle Scholar
  49. 49.
    Lengke, M., Fleet, M. F., & Southam, G. (2006a). Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir, 22, 2780.CrossRefGoogle Scholar
  50. 50.
    Lengke, M., Ravel, B., Fleet, M. E., Wanger, G., Gordon, G. A., & Southam, G. (2006b). Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environmental Science & Technology, 40, 6304.CrossRefGoogle Scholar
  51. 51.
    He, S., Guo, Z., Zhang, Y., Zhang, S., & Wang, J. (2007). Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Materials Letters, 61, 3984.CrossRefGoogle Scholar
  52. 52.
    Lloyd, J. R., Yong, P., & Macaskie, L. E. (1998). Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Applied and Environmental Microbiology, 64, 4607.Google Scholar
  53. 53.
    Nair, B., & Pradeep, T. (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Crystal Growth and Design, 2, 293.CrossRefGoogle Scholar
  54. 54.
    Prasad, K., Jha, A. K., & Kulkarni, A. R. (2007). Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Research Letters, 2, 248.CrossRefGoogle Scholar
  55. 55.
    Korbekandi, H., Iravani, S., & Abbasi, S. (2012). Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp Casei. Journal of Chemical Technology and Biotechnology, 87, 932.CrossRefGoogle Scholar
  56. 56.
    Sunkar, S., & Nachiyar, C. V. (2012). Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymu. Asian Pacific Journal of Tropical Biomedicine, 12, 953.CrossRefGoogle Scholar
  57. 57.
    Sastry, M., Ahmad, A., Khan, M. I., & Kumar, R. (2003). Biosynthesis of metal nanoparticles using fungi and actinomycetes. Current Science, 85, 162.Google Scholar
  58. 58.
    Castro-Longoria, E., Vilchis-Nestor, A. R., & Avalos-Borja, M. (2011). Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids and Surfaces B: Biointerfaces, 83, 42.CrossRefGoogle Scholar
  59. 59.
    Castro-Longoria, E., Moreno-Velásquez, S. D., Vilchis-Nestor, A. R., Arenas-Berumen, E., & Avalos-Borja, M. (2012). Production of platinum nanoparticles and nano aggregates using Neurospora crassa. Journal of Microbiology and Biotechnology, 22, 1000.CrossRefGoogle Scholar
  60. 60.
    Volesky, B., & Holan, Z. R. (1999). Biosorption of heavy metals. Biotechnology Progress, 11, 235.CrossRefGoogle Scholar
  61. 61.
    Bhainsa, K. C., & D'Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids and Surfaces B: Biointerfaces, 47, 160.CrossRefGoogle Scholar
  62. 62.
    Ahmad, A., Mukherjee, P., Mandal, D., Senapati, S., & Khan, M. I. (2002). Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. Journal of the American Chemical Society, 124, 12108.CrossRefGoogle Scholar
  63. 63.
    Vahabi, K., Mansoori, G. A., & Karimi, S. (2011). Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Insciences Journal, 1, 65.CrossRefGoogle Scholar
  64. 64.
    Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., & Sarkar, I. (2006). Extracellular biosynthesis of magnetite using fungi. Small, 2, 135.CrossRefGoogle Scholar
  65. 65.
    Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Kale, S. P. (2008). Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology, 19, 1.Google Scholar
  66. 66.
    Alghuthaymia, M. A., Almoammarb, H., Raic, M., Said-Galievd, E., & Abd-Elsalam, K. A. (2015). Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnology and Biotechnological Equipment, 29, 221.CrossRefGoogle Scholar
  67. 67.
    Usha, R., Prabu, E., Palaniswamy, M., Venil, C. K., & Rajendran, R. (2010). Synthesis of metal oxide nano particles by Streptomyces sp for development of antimicrobial textiles. Global Journal of Biotechnology & Biochemistry, 5, 153.Google Scholar
  68. 68.
    Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. I. (2007). Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnology Letters, 29, 439.CrossRefGoogle Scholar
  69. 69.
    Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 257.CrossRefGoogle Scholar
  70. 70.
    Nair, V., Sambre, D., Joshi, S., Bankar, A., Kumar, A. R., & Zinjarde, S. (2013). Yeast-derived melanin mediated synthesis of gold nanoparticles. Journal of Bionanoscience, 7, 159.CrossRefGoogle Scholar
  71. 71.
    Agnihotria, M., Joshia, S., Ravi, A. K., Zinjardea, S., & Kulkarni, S. (2009). Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Materials Letters, 63, 1231.CrossRefGoogle Scholar
  72. 72.
    Sen, K., Sinha, P., & Lahiri, S. (2011). Time dependent formation of gold nanoparticles in yeast cells: a comparative study. Biochemical Engineering Journal, 55, 1.CrossRefGoogle Scholar
  73. 73.
    Waghmare, S. R., Mulla, M. N., Marathe, S. R., & Sonawane, K. D. (2015). Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech, 5, 33.CrossRefGoogle Scholar
  74. 74.
    Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S. K., & Paknikar, K. M. (2003). Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14, 95.CrossRefGoogle Scholar
  75. 75.
    Moazeni, M., Rashidi, N., Shahverdi, A. R., Noorbakhsh, F., & Rezaie, S. (2012). Extracellular production of silver nanoparticles by using three common species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Iranian Biomedical Journal, 16, 52.Google Scholar
  76. 76.
    Ashour, S. M. (2014). Silver nanoparticles as antimicrobial agent from Kluyveromyces marxianus and Candida utilis. International Journal of Current Microbiology and Applied Sciences, 3, 384.Google Scholar
  77. 77.
    Ninganagouda, S., Rathod, V., & Singh, D. (2014). Characterization and biosynthesis of silver nanoparticles using a fungus Aspergillus niger. International Letters of Natural Sciences, 15, 49.CrossRefGoogle Scholar
  78. 78.
    Davies, R. L., & Etris, S. F. (1997). The development and functions of silver in water purification and disease control. Catalysis Today, 36, 107.CrossRefGoogle Scholar
  79. 79.
    Silvestry-Rodriguez, N., Sicairos-Ruelas, E. E., Gerba, C. P., & Bright, K. R. (2007). Silver as a disinfectant. Reviews of Environmental Contamination and Toxicology, 191, 23.Google Scholar
  80. 80.
    Brady, M. J., Lisay, C. M., Yurkovetskiy, A. V., & Sawan, S. P. (2003). Persistent silver disinfectant for the environmental control of pathogenic bacteria. American Journal of Infection Control, 31, 208.CrossRefGoogle Scholar
  81. 81.
    Lansdown, A. B. (2006). Silver in health care: antimicrobial effects and safety in use. Current Problems in Dermatology, 33, 17.CrossRefGoogle Scholar
  82. 82.
    Gaikwad, S. C., Birla, S. S., Ingle, A. P., Gade, A. K., Marcato, P. D., Rai, M., & Duran, N. (2013). Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. Journal of the Brazilian Chemical Society, 24, 1974.Google Scholar
  83. 83.
    Chandrappa, C. P., Govindappa, M., Chandrasekar, N., Sarkar, S., Ooha, S., & Channabasava, R. (2016). Endophytic synthesis of silver chloride nanoparticles from Penicillium sp. of Calophyllum apetalum. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 025016.Google Scholar
  84. 84.
    Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12, 7.Google Scholar
  85. 85.
    Ishida, K., Cipriano, T. F., Rocha, G. M., Weissmüller, G., Gomes, F., Miranda, K., & Rozental, S. (2013). Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterization and analysis of antifungal activity against pathogenic yeasts. Memórias do Instituto Oswaldo Cruz, 109, 220.CrossRefGoogle Scholar
  86. 86.
    Fayaz, A. M., Balaji, K., Girilal, M., Kalaichelvan, P. T., & Venkatesan, R. (2009). Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry, 57, 6246.CrossRefGoogle Scholar
  87. 87.
    Kathiresan, K., Manivannan, S., Nabeel, M., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71, 133.CrossRefGoogle Scholar
  88. 88.
    Gajbhiye, M., Kesharwan, I. J., Ingle, A., Gade, A., & Rai, M. (2009). Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine, 5, 382.CrossRefGoogle Scholar
  89. 89.
    Chen, J. C., Lin, Z. H., & Ma, X. X. (2003). Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Letters in Applied Microbiology, 37, 105.CrossRefGoogle Scholar
  90. 90.
    Sanghi, R., Verma, P., & Puri, S. (2011). Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Advances in Chemical Engineering and Science, 1, 154.CrossRefGoogle Scholar
  91. 91.
    Ingle, A., Rai, M., Gade, A., & Bawaskar, M. (2009). Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research, 11, 2079.CrossRefGoogle Scholar
  92. 92.
    Verma, V. C., Kharwar, R. N., & Gange, A. C. (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine, 5, 33.CrossRefGoogle Scholar
  93. 93.
    Navazi, Z. R., Pazouki, M., & Halek, F. S. (2010). Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iranian Journal of Biotechnology, 8, 56.Google Scholar
  94. 94.
    Kumar, S. K., Peter, Y. A., & Nadeau, J. L. (2008b). Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology, 19, 4951.Google Scholar
  95. 95.
    Li, G., He, D., Qian, Y., Guan, B., Gao, S., Cui, Y., Yokoyama, K., & Wang, L. (2012). Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. International Journal of Molecular Sciences, 13, 466.CrossRefGoogle Scholar
  96. 96.
    Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., & Rai, M. (2008). Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanoscience, 4, 141.CrossRefGoogle Scholar
  97. 97.
    Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H., & Venkataraman, A. (2008). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43, 1164.CrossRefGoogle Scholar
  98. 98.
    Mishra, A. N., Bhadauria, S., Gaur, M. S., & Pasricha, R. (2010). Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. Journal of the Minerals, 62, 48.Google Scholar
  99. 99.
    Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., & Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939.CrossRefGoogle Scholar
  100. 100.
    Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P. T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 103.CrossRefGoogle Scholar
  101. 101.
    Kannan, B., & Natarajan, S. (2011b). Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids and Surfaces A, 380, 156.CrossRefGoogle Scholar
  102. 102.
    Sheikhloo, Z., Salouti, M., & Katiraee, F. (2011). Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. Journal of Cluster Science, 22, 661.CrossRefGoogle Scholar
  103. 103.
    Gopinath, K., & Arumugam, A. (2014). Extracellular mycosynthesis of gold nanoparticles using Fusarium solani. Applied Nanoscience, 4, 657.CrossRefGoogle Scholar
  104. 104.
    Priyadarshini, E., Pradhan, N., Sukla, L. B., & Panda, P. K. (2014). Controlled synthesis of gold nanoparticles using Aspergillus terreus IFo and its antibacterial potential against gram negative pathogenic bacteria. Journal of Nanotechnology, 2014, 1.CrossRefGoogle Scholar
  105. 105.
    Soni, N., & Prakash, S. (2012). Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Reports in Parasitology, 2, 1.Google Scholar
  106. 106.
    Sanghi, R., & Verma, P. (2010). pH dependant fungal proteins in the ‘green’ synthesis of gold nanoparticles. Advanced Materials Letters, 1, 193.CrossRefGoogle Scholar
  107. 107.
    Saifuddin, N., Wong, C. W., & Yasumira, A. A. N. (2009). Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. European Journal of Chemistry, 6, 61.Google Scholar
  108. 108.
    Sintubin, L., Verstraete, W., & Boon, N. (2012). Biologically produced nanosilver: current state and future perspectives. Biotechnology and Bioengineering, 109, 2422.CrossRefGoogle Scholar
  109. 109.
    Vigneshwaran, N., Nachane, R. P., Balasubramanya, R. H., & Varadarajan, P. V. (2006). A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 341, 2012.CrossRefGoogle Scholar
  110. 110.
    Bhambure, R., Bule, M., Shaligram, N., Kamat, M., & Singhal, R. (2009). Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—its characterization and stability. Chemical Engineering & Technology, 32, 1036.CrossRefGoogle Scholar
  111. 111.
    Binupriya, A. R., Sathishkumar, M., & Yun, S. I. (2010). Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids and Surfaces. B, Biointerfaces, 79, 531.CrossRefGoogle Scholar
  112. 112.
    Rada, A. G., Abbasib, H., & Afzalib, M. H. (2011). Gold nanoparticles: synthesising, characterizing and reviewing novel application in recent years. Physics Procedia, 22, 203.CrossRefGoogle Scholar
  113. 113.
    Kannan, B., & Natarajan, S. (2011a). Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. Journal of Hazardous Materials, 189, 519.CrossRefGoogle Scholar
  114. 114.
    Mishra, A., Tripathy, S. K., & Yuna, S. (2012). Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochemistry, 47, 701.CrossRefGoogle Scholar
  115. 115.
    Mishra, A., Tripathy, S. K., Wahab, R., Jeong, S., Hwang, I., Yang, Y., Kim, Y., Shin, H., & Yun, S. (2011). Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Applied Microbiology and Biotechnology, 92, 617.CrossRefGoogle Scholar
  116. 116.
    Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S. C., Azam, A., & Owais, M. (2011). Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine, 6, 2305.Google Scholar
  117. 117.
    Oza, G., Pandey, S., Gupta, A., Kesarkar, R., & Sharon, M. (2012). Biosynthetic reduction of gold ions to gold nanoparticles by Nocardia farcinica. Journal of Microbiology and Biotechnology Research, 2, 511.Google Scholar
  118. 118.
    Das, S. K., Dickinson, C., Lafir, F., Broughamc, D. F., & Marsili, E. (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry, 14, 1322.CrossRefGoogle Scholar
  119. 119.
    Sheikhloo, Z., & Salouti, M. (2011). Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. International Journal of Nanoscience and Nanotechnology, 7, 102.Google Scholar
  120. 120.
    Gericke, M., & Pinches, A. (2006). Microbial production of gold nanoparticles. Gold Bulletin, 39, 22.CrossRefGoogle Scholar
  121. 121.
    Subramanian, M., Alikunhi, M. N., & Kathiresan, K. (2010). In vitro synthesis of silver nanoparticles by marine yeasts from coastal mangrove sediment. Advanced Science Letters, 3, 428.CrossRefGoogle Scholar
  122. 122.
    Lim, H. A., Mishra, A., & Yun, S. I. (2011). Effect of pH on the extra cellular synthesis of gold and silver nanoparticles by Saccharomyces cerevisae. Journal of Nanoscience and Nanotechnology, 11, 518.CrossRefGoogle Scholar
  123. 123.
    Mishra, A., Tripathy, S., & Yun, S. (2011b). Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. Journal of Nanoscience and Nanotechnology, 1, 243.CrossRefGoogle Scholar
  124. 124.
    Pimprikar, P. S., Joshi, S. S., Kumar, A. R., Zinjarde, S. S., & Kulkarni, S. K. (2009). Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and Surfaces B: Biointerfaces, 74, 309.CrossRefGoogle Scholar
  125. 125.
    Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2006). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69, 485.CrossRefGoogle Scholar
  126. 126.
    Magdi, H. M., Mourad, M. H. E., & El-Aziz, M. M. A. (2014). Biosynthesis of silver nanoparticles using fungi and biological evaluation of mycosynthesized silver nanoparticles. The Egyptian Journal of Experimental Biology (Botany), 10, 1.Google Scholar
  127. 127.
    Kumar, S. A., Peter, Y., Nadeau, J. Biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin for cellular uptake and toxicity. 2009 I.E. 35th Ann. Northeast Bioengg. Conf. 2009.Google Scholar
  128. 128.
    AL-Kazazz, F. F. M., AL-Imarah, K. A. F., AL-Hasnawi, s. I. A., Agelmashotjafar, L., & Abdul-Majeed, B. A. (2013). A simple method for synthesis, purification and concentration stabilized gold nanoparticles. Journal of Engineering Research and Applications, 3, 21.Google Scholar
  129. 129.
    Robertson, J. D., Rizzello, L., Milagros, A., Jens, G., Contini, C., Magoń, M. S., Renshaw, S. A., & Battaglia, G. (2016). Purification of nanoparticles by size and shape. Scientific Reports, 6, 1.CrossRefGoogle Scholar
  130. 130.
    Balashanmugam, P., Santhosh, S., Giyaullah, H., Balakumaran, M. D., & Kalaichelvan, P. T. (2013). Mycosynthesis, characterization and antibacterial activity of silver nanoparticles from Microporus xanthopus: a macromushroom. International Journal of Innovative Research in Science, Engineering and Technology, 2, 6262.Google Scholar
  131. 131.
    Verma, H. N., Singh, P., & Chavan, R. M. (2014). Gold nanoparticle: synthesis and characterization. Veterinary World, 7, 72.CrossRefGoogle Scholar
  132. 132.
    Sunkar, S., & Nachiyar, C. V. (2012). Microbial synthesis and characterization of silver nanoparticles using endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Global Journal of Medical Research, 12, 43.Google Scholar
  133. 133.
    Gaikwad, S., & Bhosale, A. (2012). Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. European Journal of Experimental Biology, 2, 1654.Google Scholar
  134. 134.
    Sett, A., Gadewar, M., Sharma, P., Deka, M., & Bora, U. (2016). Green synthesis of gold nanoparticles using aqueous extract of Dillenia indica. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7, 1.Google Scholar
  135. 135.
    Thakker, J. N., Dalwadi, P., & Dhandhukia, P. C. (2013). Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense jT1, a plant pathogenic fungi. ISRN Biotechnology, 2013, 1.Google Scholar
  136. 136.
    Srinath, B. S., & Rai, V. R. (2015). Biosynthesis of gold nanoparticles using extracellular molecules produced by Enterobacter aerogenes and their catalytic study. Journal of Cluster Science, 26, 1483.CrossRefGoogle Scholar
  137. 137.
    Shafeev, G. A., Freysz, E., & Bozon-verduraz, F. (2004). Self-influence of a femtosecond laser beam upon ablation of Ag in liquids. Applied Physics A, 78, 307.CrossRefGoogle Scholar
  138. 138.
    Maliszewska, I. (2013). Microbial mediated synthesis of gold nanoparticles: preparation, characterization and cytotoxicity studies. Digest Journal of Nanomaterials and Biostructures, 8, 1123.Google Scholar
  139. 139.
    Shedbalkar, U., Singh, R., Wadhwani, S., Gaidhani, S., & Chopade, B. A. (2014). Microbial synthesis of gold nanoparticles: current status and future prospects. Advances in Colloid and Interface Science, 209, 40.CrossRefGoogle Scholar
  140. 140.
    Sangappa, M., & Thiagarajan, P. (2012). Mycobiosynthesis and characterization of silver nanoparticles from Aspergillus niger: a soil fungal isolate. International of Journal Life Sciences Biotechnology and Pharma Research, 1, 282.Google Scholar
  141. 141.
    Sharma, N., Pinnaka, A. K., Raje, M., Ashish, F. N. U., Bhattacharyya, M. S., & Roy Choudhury, A. (2012). Exploitation of marine bacteria for production of gold nanoparticles. Microbial Cell Factories, 11, 86.CrossRefGoogle Scholar
  142. 142.
    Barabadi, H., Honary, S., Ebrahimi, P., Mohammadi, M. A., Alizadeh, A., & Naghibi, F. (2014). Microbial mediated preparation, characterization and optimization of gold nanoparticles. Brazilian Journal of Microbiology, 45, 1493.CrossRefGoogle Scholar
  143. 143.
    Awwad, A. M., Salem, N. M., & Abdeen, A. O. (2013). Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. International Journal of Industrial Chemistry, 4, 29.CrossRefGoogle Scholar
  144. 144.
    Shelar, G. B., & Chavan, A. M. (2014). Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. International Journal of Biomedical and Advance Research, 5, 348.Google Scholar
  145. 145.
    Karthik, C., & Radha, K. V. (2012). Biosynthesis and characterization of silver nanoparticles using Enterobacter aerogenes: a kinetic approach. Digest Journal of Nanomaterials and Biostructures, 7, 1007.Google Scholar
  146. 146.
    Anuradha, J., Abbasi, T., & Abbasi, A. (2015). An eco-friendly method of synthesizing gold nanoparticles using an otherwise worthless weed pistia (Pistia stratiotes L.) Journal of Advanced Research, 6, 711.CrossRefGoogle Scholar
  147. 147.
    Akbari, B., Tavandashti, M. P., & Zandrahimi, M. (2011). Particle size characterization of nanoparticles—a practical approach. Iranian Journal Materials Science Engineering, 8, 48.Google Scholar
  148. 148.
    Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017
Corrected publication September/2017

Authors and Affiliations

  1. 1.Department of Studies in MicrobiologyUniversity of Mysore, ManasagangothriMysoreIndia

Personalised recommendations