BioNanoScience

, Volume 8, Issue 1, pp 5–16 | Cite as

Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review

  • T. M. Abdelghany
  • Aisha M. H. Al-Rajhi
  • Mohamed A. Al Abboud
  • M. M. Alawlaqi
  • A. Ganash Magdah
  • Eman A. M. Helmy
  • Ahmed S. Mabrouk
Article

Abstract

Nanoparticle biosynthetic discipline is still under development and is known to have a big impact on numerous manufactures for a long time. Nowadays, biosynthesis of silver nanoparticles (AgNPs) had gained so much attention in developed countries due to development demand of environmental friendly technology for material synthesis. The use of green chemistry is environmental friendly, non-toxic, and cheap. This review focused on the recent scientific publications in the green synthesis field of AgNPs and its applications. A number of microorganisms including bacteria, fungi, yeasts, algae, and plants either intra- or extracellular have been found to be capable of synthesizing AgNPs. All scientific reports reflect the unique properties AgNPs possess that find myriad applications such as antibacterial, antifungal, antivirus, and anticancer drugs, larvicidal excellent catalytic natural action towards degradation of dyes, very good antioxidants, treatment of diabetes-related complications, and wound healing activities. The recent strategy for improving the efficacy of antibiotics is to combine them with AgNPs in order to control the microbial infections as confirmed by the damage action of AgNPs on microbial deoxyribonucleic acid. This review describes also the microorganism/plant extract and the reaction parameters used in synthesis of the AgNPs, which hold prominent impact on their size, shape, and application. Recently published information on AgNP synthesis and its applications are summarized in this review.

Keywords

Applications Biosynthesis Bacteria Fungi Algae Plants Silver nanoparticles 

Notes

Acknowledgments

The authors acknowledge Al-Azhar University, Jazan University, Princess Nora Bent Abdularahman University, and King Abdulaziz University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Monika, B., Anupam, B., Madhu, S., & Priyanka, K. (2015). Green synthesis of gold and silver nanoparticles. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(3), 1710–1716.Google Scholar
  2. 2.
    Kumar, C. G., & Poornachandra, Y. (2015). Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids and Surfaces B: Biointerfaces, 125, 110–119.CrossRefGoogle Scholar
  3. 3.
    Yanan, Z., Guiqiu, C., Guangming, Z., Zhongwu, L., Ming, Y., Anwei, C., Zhi, G., Zhenzhen, H., & Qiong, T. (2015). Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions. Journal of Hazardous Materials, 285, 236–244.CrossRefGoogle Scholar
  4. 4.
    Jannathul, F. M., & Lalitha, P. (2015). Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, 2015, 829526, 18 pages. doi: 10.1155/2015/829526.Google Scholar
  5. 5.
    Protima, R., Siim, K., Stanislav, F., & Erwan, R. (2015). A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Advances in Materials Science and Engineering, 2015, 682749 9 pages.Google Scholar
  6. 6.
    Anju, V. R., Anandhi, P., Arunadevi, R., Boovisha, A., Sounthari, P., Saranya, J., Parameswari, K., & Chitra, S. (2015). Satin leaf (Chrysophyllum oliviforme) extract mediated green synthesis of silver nanoparticles: antioxidant and anticancer activities. J. Pharm. Sci. & Res., 7(6), 266–273.Google Scholar
  7. 7.
    Vardhana, J., & Kathiravan, G. (2015). Biosynthesis of silver nanoparticles by endophytic fungi Pestaloptiopsis pauciseta isolated from the leaves of Psidium guajava Linn. Int. J. Pharm. Sci. Rev. Res., 31(1), 29–31.Google Scholar
  8. 8.
    Abd El-Ghany, T. M. (2013). Stachybotrys chartarum: a novel biological agent for the extracellular synthesis of silver nanoparticles and their antimicrobial activity. Indonesian J of Biotechnology, 18(2), 75–82.Google Scholar
  9. 9.
    Abd El-Ghany, T. M., Abdel Rhaman, M., Shater, A., Abboud, M. A., & Alawlaqi, M. M. (2013). Silver nanoparticles biosynthesis by Fusarium moniliforme and their antimicrobial activity against some food-borne bacteria. Mycopathologia, 11(1), 1–7.Google Scholar
  10. 10.
    Salvadori, M. R., Ando, R. A., Oller Nascimento, C. A., & Corrêa, B. (2015). Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PloS One, 10(6), e0129799.CrossRefGoogle Scholar
  11. 11.
    Saminathan, K. (2015). Biosynthesis of silver nanoparticles from dental caries causing fungi Candida albicans. Int.J.Curr.Microbiol.App.Sci, 4(3), 1084–1091.Google Scholar
  12. 12.
    Ghasem, R., Fahimeh, A., & Alireza, K. (2016). Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 15(2), 371–375.CrossRefGoogle Scholar
  13. 13.
    Ashish, K. S., Vandana, R., Dattu, S., Shivaraj, N., Prema, K., Jasmine, M., & Manzoor ul, H. (2015). Bioactive silver nanoparticles from endophytic fungus Fusarium sp. isolated from an ethanomedicinal plant Withania somnifera (Ashwagandha) and its antibacterial activity. International Journal of Nanomaterials and Biostructures., 5(1), 15–19.Google Scholar
  14. 14.
    Shatha, A. S., Rana, H. A., & Huda, Z. M. (2016). Study of biosynthesis silver nanoparticles by Fusarium graminaerum and test their antimicrobial activity. International Journal of Innovation and Applied Studies., 15(1), 43–50.Google Scholar
  15. 15.
    Mohamed, G., Medhat, A., & Wafaa, E. A. (2015). Biogenic synthesis of silver nanoparticles using culture supernatant from the fungus Cunninghamella phaeospora optimization and antibacterial efficiency. Asian Academic Research Journal of Multidisciplinary, 1(33), 196–213.Google Scholar
  16. 16.
    Abd El-Aziz, A. R. M., AL-othman, M. R., Mahmoud, M. A., & Metwaly, H. A. (2015). Biosynthesis of silver nanoparticles using Fusarium solani and its impact on grain borne fungi. Digest Journal of Nanomaterials and Biostructures, 10(2), 655–662.Google Scholar
  17. 17.
    Shelar, G. B., & Chavan, A. M. (2015). Myco-synthesis of silver nanoparticles from Trichoderma harzianum and its impact on germination status of oil seed. Biolife, 3(1), 109–113.Google Scholar
  18. 18.
    Ammar, H., & El-Desouky, T. A. (2016). Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J. Applied Microbiology, 121(1), 89–100.CrossRefGoogle Scholar
  19. 19.
    Lamabam, S. D., & Joshi, S. R. (2015). Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. Journal of Microscopy and Ultrastructure., 3(1), 29–37.CrossRefGoogle Scholar
  20. 20.
    Abdallah, M. E., Abdullah, N. A., Shaban, R. S., Abdurahman, H., Ashraf, A. M., & Ali, H. B. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology & Biotechnological Equipment, 30(2), 299–304.CrossRefGoogle Scholar
  21. 21.
    Netala, V. R., Kotakadi, V. S., Bobbu, P., Susmila, A. G., & Vijaya, T. (2016). Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech, 6, 132.CrossRefGoogle Scholar
  22. 22.
    Kamiar Zomorodian, Seyedmohammad Pourshahid, Arman Sadatsharifi,. (2016) Biosynthesis and characterization of silver nanoparticles by Aspergillus species,. BioMed Research International, vol. 2016, Article ID 5435397, 6 pages, doi: 10.1155/2016/5435397.
  23. 23.
    Juhi, S., Prashant, K. S., Madan, M. S., & Abhijeet, S. (2016). Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Spring, 5(1), 861.CrossRefGoogle Scholar
  24. 24.
    Duran, N., Duran, M., de Jesus, M. B., Seabra, A. B., Favaro, W. J., & Nakazato, G. (2016). Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 789–799.CrossRefGoogle Scholar
  25. 25.
    Abeer, M. A. B. (2015). Biosynthesis and size of silver nanoparticles using Aspergillus niger ATCC 16404 as antibacterial activity. Int.J.Curr.Microbiol.App.Sci, 4(2), 522–528.Google Scholar
  26. 26.
    Pasha, A., Syed, B., Devaraju, R., & Sreedharamurthy, S. (2016). Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J., 24, 140–146.CrossRefGoogle Scholar
  27. 27.
    Shaheen, H., Meryam, S., & Tasneem, F. (2015). Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World Journal of Microbiology and Biotechnology, 31(8), 1279–1283.CrossRefGoogle Scholar
  28. 28.
    Melisa A. Q., Ivana M. A. M., Pablo R. D. ; Paulina L. P. (2016) Silver nanoparticles: biosynthesis using an ATCC reference strain of Pseudomonas aeruginosa and activity as broad spectrum clinical antibacterial agents. International Journal of Biomaterials Volume 2016, Article ID 5971047, 7 p.  http://dx.doi.org/10.1155/2016/5971047.
  29. 29.
    Divya, K., Kurian, L. C., Vijayan, S., & Jisha, M. S. (2016). Green synthesis of silver nanoparticles by Escherichia coli: analysis of antibacterial activity. J. Water Environ. Nanotechnol., 1(1), 63–74.Google Scholar
  30. 30.
    Gandhi, H., & Khan, S. (2016). Biological synthesis of silver nanoparticles and its antibacterial activity. J Nanomed Nanotechnol, 7, 366. doi: 10.4172/2157- 7439.1000366.CrossRefGoogle Scholar
  31. 31.
    Quinteros, M. A., Cano, A. V., Dalmasso, P. R., Paraje, M. G., & Páez, P. L. (2016). Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicology In Vitro, 36, 216–223.CrossRefGoogle Scholar
  32. 32.
    Rathod, D., Golinska, P., Wypij, M., Hanna, D., & Mahendra, R. (2016). A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Medical Microbiology and Immunology, 205(5), 435–447.CrossRefGoogle Scholar
  33. 33.
    Anbazhagan, M., Parthiban, S., Vini, R., Sreelekha, Y., Asokan, B., Abdul, A., Sivashanmugam, K., & Kodiveri, M. G. (2015). Synthesis and larvicidal activity of low-temperature stable silver nanoparticles from psychrotolerant Pseudomonas mandelii. Environmental Science and Pollution Research, 22, 5383–5394.CrossRefGoogle Scholar
  34. 34.
    Gowramma, B., Keerthi, U., Mokula, R., & Muralidhara, R. D. (2015). Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech, 5, 195–201.CrossRefGoogle Scholar
  35. 35.
    Lateef, A., Adelere, I. A., Gueguim-Kana, E. B., Asafa, T. B., & Beukes, L. S. Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett, 5, 29–35.Google Scholar
  36. 36.
    Bhuvaneswari, S., Subashini, G., Chitra Devi, K., & Srividhya, K. (2016). Biosynthesis of silver nano particles from endophytic bacteria, antibacterial activity and molecular characterization of Bacillus subtilis. International Journal of Advanced Research, 4(3), 1291–1297.Google Scholar
  37. 37.
    Parastoo, P., Nasrin, R. Z., & Behrooz, Y. (2016). Silver nanoparticles production by two soil isolated bacteria, Bacillus thuringiensis and Enterobacter cloacae, and assessment of their cytotoxicity and wound healing effect in rats. Wound Repair and Regeneration, 24(5), 860–869.CrossRefGoogle Scholar
  38. 38.
    Patrycja, G., Magdalena, W., Dnyaneshwar, R., Sagar, T., Hanna, D., & Mahendra, R. (2016). Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Journal of Basic Microbiology, 56(5), 541–556.CrossRefGoogle Scholar
  39. 39.
    Essam, K. F. E., Ahmed, M. E., & George, A. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6, 453. doi: 10.3389/fmicb.2015.00453.Google Scholar
  40. 40.
    Anasane, N., Golińska, P., Wypij, M., Rathod, D., Dahm, H., & Rai, M. (2016). Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans. Mycoses, 59(3), 157–166.CrossRefGoogle Scholar
  41. 41.
    Baker S, Nagendra P, Dhananjaya B.L., Mohan K. K. F. Yallappa S., Satish S., (2016) Synthesis of silver nanoparticles by endosymbiont Pseudomonas fluorescens CA 417 and their bactericidal activity. Enzyme and Microbial Technology in press  http://dx.doi.org/10.1016/j.enzmictec.2016.10.004.
  42. 42.
    Jannathul, & Lalitha, P. (2016). Biogenic silver nanoparticles—synthesis, characterization and its potential against cancer inducing bacteria. Journal of Molecular Liquids, 222, 1041–1050.CrossRefGoogle Scholar
  43. 43.
    Ajitha, B. Y., Ashok, K. R., & Sreedhara, P. R. (2015a). Biosynthesis of silver nanoparticles using Momordica charantia leaf broth: evaluation of their innate antimicrobial and catalytic activities. Journal of Photochemistry and Photobiology B: Biology, 146, 1–9.CrossRefGoogle Scholar
  44. 44.
    Peter, L., Sivagnanam, S., & Jayanthi, A. (2015). Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 19(3), 311–317.CrossRefGoogle Scholar
  45. 45.
    Emmanuel, R., Selvakumar, P., Shen-Ming, C., Chelladurai, K., Padmavathy, S., Saravanan, M., Prakash, P., Ajmal Ali, M., & Al-Hemaid, F. M. A. (2015). Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Materials Science and Engineering: C, 56, 374–379.CrossRefGoogle Scholar
  46. 46.
    Latha, M., Sumathi, M., Manikandan, R., Arumugam, A., & Prabhu, N. M. (2015). Biocatalytic and antibacterial visualization of green synthesized silver nanoparticles using Hemidesmus indicus. Microbial Pathogenesis, 82, 43–49.CrossRefGoogle Scholar
  47. 47.
    Ajitha, B. Y., Ashok, K. R., & Sreedhara, P. R. (2015b). Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials Science and Engineering:C, 49(1), 373–381.CrossRefGoogle Scholar
  48. 48.
    Masud, R. M., Dipak, R., Sandeep, K. D., Sourav, C., Biplab, B., Dipanwita, M., Dibyendu, M., Sutanuka, P., Somenath, R., Mukut, C., & Dipankar, C. (2015). Studies on green synthesized silver nanoparticles using Abelmoschus esculentus (L.) pulp extract having anticancer (in vitro) and antimicrobial applications. Arabian Journal of Chemistry, 1, 1–45. doi: 10.1016/j.arabjc.2015.04.033.Google Scholar
  49. 49.
    Ibrahim, H. M. M. (2015). Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of Radiation Research and Applied Sciences, 8, (3, 265–275.CrossRefGoogle Scholar
  50. 50.
    Kokila, T., Ramesh, P. S., & Geetha, D. (2015). Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach. Applied Nanoscience, 5(8), 911–920.CrossRefGoogle Scholar
  51. 51.
    Amit, K. M., Debabrata, T., Alka, C., Pavan, K. A., Anupam, C., Inder, P. S., & Uttam, C. B. (2015). Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent. Materials Science and Engineering: C, 53(1), 120–127.Google Scholar
  52. 52.
    Rathi Sre, P. R., Reka, M., Poovazhagi, R., Arul, K. M., & Murugesan, K. (2015). Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135, 1137–1144.CrossRefGoogle Scholar
  53. 53.
    Palaniyandi, V., Jayabrata, D., Raman, P., Baskaralingam, V., & Kannaiyan, P. (2015). Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.) Industrial Crops and Products, 66, 103–109.CrossRefGoogle Scholar
  54. 54.
    Shakeel, A., Saifullah, M. A., Babu, L. S., & Saiqa, I. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of Radiation Research and Applied Sciences., 9(1), 1–7.CrossRefGoogle Scholar
  55. 55.
    Pugazhendhi, S., Kirubha, E., Palanisamy, P. K., & Gopalakrishnan, R. (2015). Synthesis and characterization of silver nanoparticles from Alpinia calcarata by green approach and its applications in bactericidal and nonlinear optics. Applied Surface Science, 357(Part B), 1801–1808.CrossRefGoogle Scholar
  56. 56.
    Ramar, M., Beulaja, M., Thiagarajan, R., Koodalingam, A., Narayanan, M. P., Muthuramalingam, J. B., Muthulakshmi, P., Subramanian, P., & Arumugam, M. (2015). Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 138(5), 120–129.Google Scholar
  57. 57.
    Rani, M., Jayachandra, R. N., & Sudha, R. S. (2015). Biogenic silver nanoparticles from Abutilon indicum: their antioxidant, antibacterial and cytotoxic effects in vitro. Colloids and Surfaces B: Biointerfaces, 128, 276–286.CrossRefGoogle Scholar
  58. 58.
    Babak, S., Amir, R., & Momeni, S. S. (2015). Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 134, 326–332.CrossRefGoogle Scholar
  59. 59.
    Gavade, N. L., Kadam, A. N., Suwarnkar, M. B., Ghodake, V. P., & Garadkar, K. M. (2015). Biogenic synthesis of multi-applicative silver nanoparticles by using Ziziphus Jujuba leaf extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136(Part B), 953–960.CrossRefGoogle Scholar
  60. 60.
    Manikandan, R., Beulaja, M., Prabhu, N. M., Thiagarajan, R., Anjugam, M., Palanisamy, S., Saravanan, K., & Arumugam, M. (2015). Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 140, 223–228.CrossRefGoogle Scholar
  61. 61.
    Ashokkumar, S., Ravi, S., Kathiravan, V., & Velmurugan, S. (2015). Synthesis of silver nanoparticles using Abutilon indicum leaf extract and their antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 34–39.CrossRefGoogle Scholar
  62. 62.
    Ramesh, P. S., Kokila, T., & Geetha, D. (2015). Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 142, 339–343.CrossRefGoogle Scholar
  63. 63.
    Abdolhossein, M., Mina, S., Mahere, R. B., & Majid, D. (2015). Plant mediated biosynthesis of silver nanoparticles using Prosopis farcta extract and its antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 141, 287–291.CrossRefGoogle Scholar
  64. 64.
    Arthanari, S., Mani, G., Jayabalan, J., & Hyun, T. J. (2015). Biosynthesis of silver nanoparticles using Cassia tora leaf extract and its antioxidant and antibacterial activities. Journal of Industrial and Engineering Chemistry, 28(25), 277–281.Google Scholar
  65. 65.
    Elangovan, K., Elumalai, D., Anupriya, S., Shenbhagaraman, R., Kaleena, P. K., & Murugesan, K. (2015). Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. Journal of Photochemistry and Photobiology B: Biology, 151, 118–124.CrossRefGoogle Scholar
  66. 66.
    Afrah, E. M. (2015). Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles mediated by Eucalyptus camaldulensis leaf extract. Asian Pacific Journal of Tropical Biomedicine., 5(5), 382–386.CrossRefGoogle Scholar
  67. 67.
    Kathireswari, P., & Satheesh, K. K. (2016). Biological synthesis of silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. Int.J.Curr.Microbiol.App.Sci., 5(3), 926–937.CrossRefGoogle Scholar
  68. 68.
    Ashraf, J. M., Mohammad, A. A., Haris, M. K., Mohammad, A. A., & Inho, C. (2016). Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Scientific Reports, 6, 20414.CrossRefGoogle Scholar
  69. 69.
    Shadakshari, S., Arehalli, S. S., Ningappa, K. S., Gurukar, S. S., Jose, S. M., & Puttaswamappa, M. (2016). Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. Advanced Materials Letters, 7(5), 383–389.CrossRefGoogle Scholar
  70. 70.
    Muthu, K., & Rathika, C. (2016). Casuarina equisetifolia leaf extract mediated biosynthesis of silver nanoparticles. Journal of Nanoscience and Technology, 2(3), 166–168.Google Scholar
  71. 71.
    Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K., & Upadhyay, S. N. (2016). Light induced green synthesis of silver nanoparticles using aqueous extract of Prunus amygdalus. Green and Sustainable Chemistry, 6, 26–33.CrossRefGoogle Scholar
  72. 72.
    Luis, L.-M. J., Borjas-Garcia, S. E., Esparza, R., et al. (2016). Synthesis and catalytic evaluation of silver nanoparticles synthesized with Aloysia triphylla leaf extract. Journal of Cluster Science. doi: 10.1007/s10876-016-1062-3.Google Scholar
  73. 73.
    Yugandhar, P., & Savithramma, N. (2016). Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon. Applied Nanoscience, 6(2), 223–233. doi: 10.1007/s13204-015-0428-4.CrossRefGoogle Scholar
  74. 74.
    Yugandhar, P., Haribabu, R., & Savithramma, N. (2015). Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3. Biotech, 5(6), 1031–1039.Google Scholar
  75. 75.
    Rima K. Jay S. S., Devendra P. S., (2016) Biogenic synthesis and spatial distribution of silver nanoparticles in the legume mungbean plant (Vigna radiata L.). Plant Physiology and Biochemistry  http://dx.doi.org/10.1016/j.plaphy.2016.06.001.
  76. 76.
    Reddy, T. R. K., & Kim, H. (2016). Facile synthesis of silver nanoparticles and its antibacterial activity against Escherichia coli and unknown bacteria on mobile phone touch surfaces/computer keyboards. Applied Physics A: Materials Science & Processing, 122, 652.CrossRefGoogle Scholar
  77. 77.
    Asaduzzaman A, Byung-Soo C., Syed R. K., (2016) Vitis vinifera assisted silver nanoparticles with antibacterial and antiproliferative activity against Ehrlich Ascites Carcinoma cells. Journal of Nanoparticles. Vol 2016, Article ID 6898926, 9 p.Google Scholar
  78. 78.
    Zahra, H. P., Hossein, A., Naser, K., & Ali, F. (2016). Eco-friendly synthesis and antimicrobial activity of silver nanoparticles using Dracocephalum moldavica seed extract. Applied Sciences, 6(69), 1–10.Google Scholar
  79. 79.
    Basker, S. (2016). Ecofriendly synthesis of silver nanoparticles from Eichhornia crassipes. Int. J. Curr. Res. Biosci. Plant Biol., 3(3), 56–61. doi: 10.20546/ijcrbp.2016.303.011.CrossRefGoogle Scholar
  80. 80.
    Pugazhendhi, S., Sathya, P., Palanisamy, P. K., & Gopalakrishnan, R. (2016). Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. Journal of Photochemistry and Photobiology B: Biology., 159, 155–160.CrossRefGoogle Scholar
  81. 81.
    Kuppurangan, G., Karuppasamy, B., Nagarajan, K., Rajkumar, K. S., Nilmini, V., & Thirumurugan, R. (2016). Biogenic synthesis and spectroscopic characterization of silver nanoparticles using leaf extract of Indoneesiella echioides: in vitro assessment on antioxidant, antimicrobial and cytotoxicity potential. Applied Nanoscience., 6(7), 973–982.CrossRefGoogle Scholar
  82. 82.
    Sudipta, P., Indranil, C., Kalyani, K., & Nandan, B. (2016). Biological application of green silver nanoparticle synthesized from leaf extract of Rauvolfia serpentina Benth. Asian Pacific Journal of Tropical Disease, 6(7), 549–556.CrossRefGoogle Scholar
  83. 83.
    Javad, B., Farideh, N., Tayebe, R., Marzieh, M., & Rosfarizan, M. (2015). Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules, 20(2), 2693–2706.CrossRefGoogle Scholar
  84. 84.
    Khatami, M., Mehnipor, R., Poor, M. H. S., & Gholamreza, S. J. (2016). Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. Journal of Cluster Science, 27(5), 1601–1612.CrossRefGoogle Scholar
  85. 85.
    Ahila, N. K., Sri, R. V., Prakasha, S., Manikandand, B., Ravindran, J., Dhanalakshmi, P. K., & Kannapiran, E. (2016). Synthesis of stable nanosilver particles (AgNPs) by the proteins of seagrass Syringodium isoetifolium and its biomedicinal properties. Biomedicine & Pharmacotherapy, 84, 60–70.CrossRefGoogle Scholar
  86. 86.
    Sinha, S. N., Paul, D., Halder, N., Dipta, S., & Samir, K. P. (2015). Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience, 5(6), 703–709.CrossRefGoogle Scholar
  87. 87.
    Vijay, P., David, B., Pravin, P., & Miroslav, G. (2015). Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports, 5, 112–119.CrossRefGoogle Scholar
  88. 88.
    Annamalai, J., & Nallamuthu. (2016). Green synthesis of silver nanoparticles: characterization and determination of antibacterial potency. Applied Nanoscience, 6(2), 259–265.CrossRefGoogle Scholar
  89. 89.
    Khaled, S. K., Ragaa, A. H., & Hanafy, A. H. (2016). Antitumor activity of silver nanoparticles biosynthesized by micro algae. Journal of Chemical and Pharmaceutical Research, 8(3), 1–6.Google Scholar
  90. 90.
    Kathiraven, T., Sundaramanickam, A., Shanmugam, N., & Balasubramanian, T. (2015). Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Applied Nanoscience, 5(4), 499–504.CrossRefGoogle Scholar
  91. 91.
    Edison, T. N., Atchudan, R., Kamal, C., & Lee, Y. R. (2016). Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess and Biosystems Engineering, 39(9), 1401–1408. doi: 10.1007/s00449-016-1616-7.CrossRefGoogle Scholar
  92. 92.
    Vieira, A. P., Stein, E. M., Andreguetti, D. X., Pio, C., & Ana, M. F. (2016). Preparation of silver nanoparticles using aqueous extracts of the red algae Laurencia aldingensis and Laurenciella sp. and their cytotoxic activities. Journal of Applied Phycology, 28(4), 2615–2622.CrossRefGoogle Scholar
  93. 93.
    Zeinab, S., Firoozeh, D., Shima, D., & Sayed, A. (2016). Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. Journal of Saudi Chemical Society, 20(4), 459–464.CrossRefGoogle Scholar
  94. 94.
    Navarro, E., Wagner, B., Odzak, N., Sigg, L., & Behra, R. (2015). Effects of differently coated silver nanoparticles on the photosynthesis of Chlamydomonas reinhardtii. Environmental Science & Technology, 1, 1–24.Google Scholar
  95. 95.
    Ahmed, E. A., Ekbal, H., Hafez, A., Ismail, A. F. M., Elsonbaty, S. M., Abbas, H. S., & Salah El Din, R. A. (2016). Biosynthesis of silver nanoparticles by Spirulina platensis & Nostoc sp. Global Advanced Research Journal of Microbiology, 4(4), 36–49.Google Scholar
  96. 96.
    Hadeel, J. A., Moubayed, N. M. S., & Sumia, I. I. (2015). Silver nanoparticles biosynthesis using Spirulina platensis used as antioxidant and antimicrobial agent. Der Pharmacia Lettre, 7(2), 9–21.Google Scholar
  97. 97.
    Nafe, A., Mohd, F., Rishikesh, P., Mohd, S., Tasneem, F., Ajit, V., Ishan, B., & Ram, P. (2015). Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir, 31(42), 11605–11612.CrossRefGoogle Scholar
  98. 98.
    Asha, K. S., Johnson, M., Chandra, K. P., Shibila, T., & Revathy. (2015). Extracellular synthesis of silver nanoparticles from a marine alga, Sargassum polycystum C. agardh and their biopotentials. World Journal Of Pharmacy And Pharmaceutical Sciences, 4(09), 1388–1400.Google Scholar
  99. 99.
    Ahmed, S., Mudasir, A., Babu, L., & Saiqa, I. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of Advanced Research, 7, 17–28.CrossRefGoogle Scholar
  100. 100.
    Keat, C. L., Azila, A., Ahmad, M. E., & Nagib, A. E. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess., 2(47), 1–12.Google Scholar
  101. 101.
    Seung, W. S., In, H. S., & Soong, H. U. (2015). Role of physicochemical properties in nanoparticle toxicity. Nanomaterials, 5, 1351–1365.CrossRefGoogle Scholar
  102. 102.
    Dong, H. J., Jin, H. K., Tae, G. L., & Jeong, H. K. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine, Nanotechnology, Biology and Medicine, 11(7), 1603–1611.CrossRefGoogle Scholar
  103. 103.
    Gurunathan, S., Han, J. W., Kim, E. S., Park, J. H., & Kim, J. H. (2015). Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. International Journal of Nanomedicine, 10, 2951–2969.CrossRefGoogle Scholar
  104. 104.
    Heera, P., & Shanmugam, S. (2015). Nanoparticle characterization and application: an overview. Int.J.Curr.Microbiol.App.Sci, 4(8), 379–386.Google Scholar
  105. 105.
    Reghan, J. H. (2016). Electrokinetics of nanoparticle gel-electrophoresis. Soft Matter, 12(38), 8030–8048.CrossRefGoogle Scholar
  106. 106.
    Maria, S. J., Jose, M. L., Teresa, G., & Juan, R. C. (2016). Evaluation of agarose gel electrophoresis for characterization of silver nanoparticles in industrial products. Electrophoresis, 37(10), 1376–1383.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. M. Abdelghany
    • 1
    • 2
  • Aisha M. H. Al-Rajhi
    • 3
  • Mohamed A. Al Abboud
    • 2
  • M. M. Alawlaqi
    • 2
  • A. Ganash Magdah
    • 4
  • Eman A. M. Helmy
    • 5
  • Ahmed S. Mabrouk
    • 2
  1. 1.Department of Botany and Microbiology, Faculty of ScienceAl-Azhar UniversityCairoEgypt
  2. 2.Department of Biology, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  3. 3.Department of Biology, Faculty of SciencePrincess Nora Bent Abdularahman UniversityRiyadhSaudi Arabia
  4. 4.Department of Biology, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  5. 5.Regional Center for Mycology and BiotechnologyAl-Azhar UniversityCairoEgypt

Personalised recommendations