Intra-minutes technical impacts of PV grid integration on distribution network operation of a rural community under extreme PV power delivery

  • Mohamed AzabEmail author
Original Paper


Integration of PV systems with distribution networks causes some technical challenges to the electrical grid and the distribution network. Most of the conducted researches concentrate on the long horizon impacts (hourly and daily based data). This study aims to capture the extreme technical impacts of PV grid integration on the distribution network at small time scale (few minutes) such that optimum mitigation techniques can be selected. The study assumes that the instantaneous peak power that would be generated from the PV array is considered constant (does not vary) for a small time frame such that the distribution network is subjected to the ultimate possible impacts (extreme impacts). Consequently, the extreme impacts are determined when the PV array produces the peak (extreme) power corresponding to the rating of installed PV array. The paper investigates the influence of both PV size (penetration level) and PV location (siting) on several technical issues such as: voltage profile at different buses, power losses across cables and short circuit currents at different nodes subjected to symmetrical fault conditions. In addition, the impacts on the total harmonic distortion (THD) of buses voltages and currents have been computed. The 3-Φ grid-connected inverter is controlled by instantaneous power control strategy to adjust the penetration level to the desired value. The obtained results indicate that the increase in PV penetration level improves the voltage profile along the network nodes and leads to a reduction in power losses across the cables as well. However, the PV grid integration has adverse effects on the distribution network protection system since the increase in PV penetration level results in higher values of the short circuit currents under symmetrical fault conditions compared with the network without renewable resource. Accordingly, the settings of overcurrent relays have to be revised to handle the under-reach (blinding of protection) or over-reach (sympathetic tripping) conditions of the relaying protection system. Moreover, the obtained results indicate that the THDs are negatively affected by the increase of the penetration level. Owing to the results, the PV allocation (PV injecting node) has also its own effects on the distribution network. The overall system is investigated using professional version of PSIM.


Photovoltaic Grid connected inverter Pv penetration Distribution network PQ control Overcurrent relay 



Active power




Point of common coupling


Reactive power


Short circuit


Total harmonic distortion


Harmonic order


Objective function




Maximum voltage deviation index


Feeder loss to load ratio


Kirchhoff’s current law


  1. 1.
    REN21: Renewables 2017 global status report (Paris: REN21 Secretariat). ISBN:978-3-9818107-6-9 (2017)Google Scholar
  2. 2.
    Mohammadi, P., Mehraeen, S.: Challenges of PV integration in low-voltage secondary networks. IEEE Trans. Power Deliv. 32(1), 525–535 (2017)CrossRefGoogle Scholar
  3. 3.
    Eltigani, D., Masri, S.: Challenges of integrating renewable energy sources to smart grids: a review. Renew. Sustain. Energy Rev. 52, 770–780 (2015)CrossRefGoogle Scholar
  4. 4.
    Karimia, M., Mokhlis, H., Naidu, K., Uddin, S., Bakar, A.H.A.: Photovoltaic penetration issues and impacts in distribution network—a review. Renew. Sustain. Energy Rev. 53, 594–605 (2016). (ELSevier Publisher) CrossRefGoogle Scholar
  5. 5.
    Adefarati, T., Bansal, R.C.: Integration of renewable distributed generators into the distribution system: a review. IET Renew. Power Gener. 10(7), 873–884 (2016)CrossRefGoogle Scholar
  6. 6.
    Aziz, T., Ketjoy, N.: PV penetration limits in low voltage networks and voltage variations. IEEE Access 7, 16784–16792 (2017)CrossRefGoogle Scholar
  7. 7.
    Lew, D., Miller, N.: Reaching new solar heights: integrating high penetrations of PV into the power system. IET Renew. Power Gener. 11(1), 20–26 (2017)CrossRefGoogle Scholar
  8. 8.
    Enslin, J.H.R.: Integration of photovoltaic solar power—the quest towards dispatchability. IEEE Instrum. Meas. Mag. 17(2), 21–26 (2014)CrossRefGoogle Scholar
  9. 9.
    Passey, R., Spooner, T., MacGill, I., Watt, M., Syngellakis, K.: The potential impacts of grid-connected distributed generation and how to address them: a review of technical and non-technical factors. Energy Policy 39, 6280–6290 (2011). CrossRefGoogle Scholar
  10. 10.
    Walling, R.A., Saint, R., Dugan, R.C., Burke, J., Kojovic, L.A.: Summary of distributed resources impact on power delivery systems. IEEE Trans. Power Deliv. 23(3), 1636–1644 (2008)CrossRefGoogle Scholar
  11. 11.
    Eltawil, M.A., Zhao, Z.: Grid-connected photovoltaic power systems: technical and potential problems—a review. Renew. Sustain. Energy Rev. 14, 112–129 (2010)CrossRefGoogle Scholar
  12. 12.
    Espinosa, A.N., Ochoa, L.F.: Probabilistic impact assessment of low carbon technologies in LV distribution systems. IEEE Trans. Power Syst. 31(3), 2192–2203 (2016)CrossRefGoogle Scholar
  13. 13.
    Ebad, M., Grady, W.M.: An approach for assessing high-penetration PV impact on distribution feeders. Electric Power Syst. Res. 133, 347–354 (2016)CrossRefGoogle Scholar
  14. 14.
    Papaioannou, I.T., Alexiadis, M.C., Demoulias, C.S., Labridis, D.P., Dokopoulos, P.S.: Modeling and field measurements of photovoltaic units connected to LV grid. Study of penetration scenarios. IEEE Trans. Power Deliv. 26(2), 979–987 (2011)CrossRefGoogle Scholar
  15. 15.
    Balamurugan, K., et al.: Impact of distributed generation on power distribution systems. Energy Procedia 25, 93–100 (2012). (ELSevier Publisher) CrossRefGoogle Scholar
  16. 16.
    Alam, M.J.E., Muttaqi, K.M., Sutanto, D.: An approach for online assessment of rooftop solar PV impacts on low-voltage distribution networks. IEEE Trans. Sustain. Energy 5(2), 663–672 (2014)CrossRefGoogle Scholar
  17. 17.
    Lamberti, F., Graditi, G.: Impact analysis of distributed PV and energy storage systems in unbalanced LV networks. In: IEEE Eindhoven Power Tech Conference, pp. 1–6 (2015)Google Scholar
  18. 18.
    Soroudi, A., Ehsan, M., Caire, R., Hadjsaid, N.: Possibilistic evaluation of distributed generations impacts on distribution networks. IEEE Trans. Power Syst. 26(4), 2293–2301 (2011)CrossRefGoogle Scholar
  19. 19.
    Soroudi, A., Aien, M., Ehsan, M.: A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks. IEEE Syst. J. 6(2), 254–295 (2012)CrossRefGoogle Scholar
  20. 20.
    Hizarci, H., Turkay, B.E.: Impact of distributed generation on radial distribution network with various load models. In: 52nd IEEE International Universities Power Engineering Conf. (UPEC), pp. 1–5 (2017)Google Scholar
  21. 21.
    Westacott, P., Candelise, C.: Assessing the impacts of photovoltaic penetration across an entire low-voltage distribution network containing 1.5 million customers. IET Renew. Power Gen. J. 10(4), 460–466 (2016)CrossRefGoogle Scholar
  22. 22.
    Watson, J.D., Watson, N.R., Martin, D.S., Wood, A.R., Lemon, S., Miller, A.J.V.: Impact of solar photovoltaics on the low-voltage distribution network in New Zealand. IET Gener. Trans. Distrib. 10(1), 1–9 (2016)CrossRefGoogle Scholar
  23. 23.
    Kitworawut, P.B., Azuatalam, D.T., Unigwe, O.C., Collin, A.J.: An investigation into the technical impacts of microgeneration on UK-type LV distribution networks. In: 5th IEEE International Conf. on Renewable Energy Research and Application ICRERA, pp. 124–129 (2016)Google Scholar
  24. 24.
    Miron, A., Cziker, A., Chindriș, M., Sacerdotianu, D.: Impact of distributed generation on weak distribution networks. Study case on a Romanian microgrid. In: IEEE International Conf. on Applied and Theoretical Electricity ICATE, pp. 1–6 (2016)Google Scholar
  25. 25.
    Lazzeroni, P., Olivero, S., Stirano, F., Repetto, M.: Impact of PV penetration in a distribution grid: a Middle-East study case. In: IEEE International Forum on Research and Technology for Society RTSI, pp. 353–358 (2015)Google Scholar
  26. 26.
    Petinrin, J.O., Shaabanb, M.: Impact of renewable generation on voltage control in distribution systems. Renew. Sustain. Energy Rev. 65, 770–783 (2016)CrossRefGoogle Scholar
  27. 27.
    Asrari, A., Wu, T., Lotfifard, S.: The Impacts of distributed energy sources on distribution network reconfiguration. IEEE Trans. Energy Convers. 31(2), 606–613 (2016)CrossRefGoogle Scholar
  28. 28.
    Tonkoski, R., Turcotte, D., EL-Fouly, T.H.M.: Impact of high PV penetration on voltage profiles in residential neighborhoods. IEEE Trans. Sustain. Energy 3(3), 518–527 (2012)CrossRefGoogle Scholar
  29. 29.
    Chen, P.C., Salcedo, R., Zhu, Q., et al.: Analysis of voltage profile problems due to the penetration of distributed generation in low-voltage secondary distribution networks. IEEE Trans. Power Deliv. 27(4), 2020–2028 (2012)CrossRefGoogle Scholar
  30. 30.
    Widéna, J., Wäckelgårda, E., Paaterob, J., Lundb, P.: Impacts of distributed photovoltaics on network voltages: stochastic simulations of three Swedish low-voltage distribution grids. Electric Power Syst. Res. 80, 1562–1571 (2010)CrossRefGoogle Scholar
  31. 31.
    Vita, V., Alimardan, T., Ekonomou, L.: The impact of distributed generation in the distribution networks’ voltage profile and energy losses. IEEE European Modelling Symposium, pp. 261–265 (2015)Google Scholar
  32. 32.
    Ogunjuyigbe, A.S.O., Ayodele, T.R., Akinola, O.O.: Impact of distributed generators on the power loss and voltage profile of sub-transmission network. J. Electr. Syst. Inf. Technol. 3, 94–107 (2016). (Elsevier Publisher) Google Scholar
  33. 33.
    Gkaidatzis, P.A., Doukas, D.I., Bouhouras, A.S.: Impact of penetration schemes to optimal DG placement for loss minimization. Int. J. Sustain Energy. 36(5), 473–488 (2015). (Taylor & Francis) CrossRefGoogle Scholar
  34. 34.
    Castillo, F., Aguila, A., González, J.: Analysis of stability of tension and losses of electric power in distribution networks with distributed generation. IEEE Latin Am. Trans. 14(11), 4491–4498 (2016)CrossRefGoogle Scholar
  35. 35.
    Marinopoulos, A.G., Alexiadis, M.C., Dokopoulos, P.S.: A correlation index to evaluate impact of PV installation on joule losses. IEEE Trans. Power Syst. 26(3), 1564–1572 (2011)CrossRefGoogle Scholar
  36. 36.
    Hadjidemetriou, L., Zacharia, L., Kyriakides, E.: Flexible power control scheme for interconnected photovoltaics to benefit the power quality and the network losses of the distribution grid. IEEE Int. Future Energy Electron. Conf. IFEEC 2017, 93–98 (2017)Google Scholar
  37. 37.
    Blaabjerg, F., Yang, Y., Yang, D., Wang, X.: Distributed power-generation systems and protection. Proc. IEEE 105(7), 1311–1331 (2017)CrossRefGoogle Scholar
  38. 38.
    Margossian, H., Deconinck, G., Sachau, J.: Distribution network protection considering grid code requirements for distributed generation. IET Gener. Transm. Distrib. 9(12), 1377–1381 (2015)CrossRefGoogle Scholar
  39. 39.
    Padullaparti, H.V., Chirapongsananurak, P., Hernandez, M.E., Santoso, S.: Analytical approach to estimate feeder accommodation limits based on protection criteria. IEEE Access 4, 4066–4081 (2016)CrossRefGoogle Scholar
  40. 40.
    Haj-ahmed, M.A., Illindala, M.S.: The influence of inverter-based DGs and their controllers on distribution network protection. IEEE Trans. Ind. Appl. 50(4), 2928–2937 (2013)CrossRefGoogle Scholar
  41. 41.
    Jiadong, H., Zeyun, Z., Xiaobo, D.: The influence of the distributed generation to the distribution network line protection and countermeasures. Phys. Procedia 24, 205–210 (2012)CrossRefGoogle Scholar
  42. 42.
    Ogden, R., Yang, J.: Impacts of distributed generation on low-voltage distribution network protection. IEEE International Universities Power Engineering Conference, pp. 1–6 (2015)Google Scholar
  43. 43.
    Eissa, M.M.: Protection techniques with renewable resources and smart grids—a survey. Renew. Sustain. Energy Rev. 52, 1645–1667 (2015). (ELSevier Publisher) CrossRefGoogle Scholar
  44. 44.
    Chidurala, A., Saha, T.K., Mithulananthan, N.: Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks—learning from an urban photovoltaic network. IET Renew. Power Gener. 10(4), 485–494 (2016)CrossRefGoogle Scholar
  45. 45.
    Nduka, O.S., Pal, B.C.: Harmonic domain modelling of PV system for the assessment of grid integration impact. IEEE Trans. Sustain. Energy 8(3), 1154–1165 (2017)CrossRefGoogle Scholar
  46. 46.
    Varma, R.K., Rahman, S.A., Vanderheide, T., Dang, M.: Harmonic impact of a 20 MW PV solar farm on a utility distribution network. IEEE Power Energy Technol. Syst. J. 3(3), 89–98 (2016)CrossRefGoogle Scholar
  47. 47.
    Silva, E.N.M., Rodrigues, A.B., da Silva, M.D.G.: Stochastic assessment of the impact of photovoltaic distributed generation on the power quality indices of distribution networks. Electric Power Syst. Res. J. 135, 59–67 (2016)CrossRefGoogle Scholar
  48. 48.
    El Batawy, S.A., Morsi, W.G.: On the impact of high penetration of rooftop solar photovoltaics on the aging of distribution transformers. Can. J. Electr. Comput. Eng. 40(2), 93–100 (2017)Google Scholar
  49. 49.
    Paterakis, N.G., Pappi, I.N., Erdinç, O., Godina, R., et al.: Consideration of the impacts of a smart neighborhood load on transformer aging. IEEE Trans. Smart Grid 7(6), 2793–2802 (2016)CrossRefGoogle Scholar
  50. 50.
    Abdelsamad, S.F., Morsi, W.G., Sidhu, T.S.: probabilistic impact of transportation electrification on the loss-of-life of distribution transformers in the presence of rooftop solar photovoltaic. IEEE Trans. Sustain. Energy 6(4), 1565–1573 (2015)CrossRefGoogle Scholar
  51. 51.
    Al-Muhaini, M., Heydt, G.T.: Evaluating future power distribution system reliability including distributed generation. IEEE Trans. Power Deliv. 28(4), 2264–2272 (2013)CrossRefGoogle Scholar
  52. 52.
    Heidari, A., Agelidis, V.G., Zayandehroodi, H., et al.: On exploring potential reliability gains under islanding operation of distributed generation. IEEE Trans. Smart Grid 7(5), 2166–2174 (2016)CrossRefGoogle Scholar
  53. 53.
    Wang, S., Li, Z., Wu, L., et al.: New metrics for assessing the reliability and economics of microgrids in distribution system. IEEE Trans. Power Syst. 28(3), 2852–2861 (2013)CrossRefGoogle Scholar
  54. 54.
    Sgouras, K.I., Bouhouras, A.S., Gkaidatzis, P.A., et al.: Impact of reverse power flow on the optimal distributed generation placement problem. IET Gener. Transm. Distrib. 11(18), 4626–4632 (2017)CrossRefGoogle Scholar
  55. 55.
    Mortazavi, H., Mehrjerdi, H., Saad, M., et al.: A monitoring technique for reversed power flow detection with high PV penetration level. IEEE Trans. Smart Grid 6(5), 2221–2232 (2015)CrossRefGoogle Scholar
  56. 56.
    Wang, Y., Tan, K.T., Peng, X.Y., So, P.L.: Coordinated control of distributed energy storage systems for voltage regulation in distribution networks. IEEE Trans. Power Delivery 31(3), 1132–1141 (2016)CrossRefGoogle Scholar
  57. 57.
    Hossain, M.J., Mahmud, M.A., Pota, H.R., Mithulananthan, N.: Design of non-interacting controllers for PV systems in distribution networks. IEEE Trans. Power Syst. 29(6), 2763–2774 (2014)CrossRefGoogle Scholar
  58. 58.
    Li, Q., Ayyanar, R., Vittal, V.: Convex optimization for DES planning and operation in radial distribution systems with high penetration of PV resources. IEEE Trans. Sustain. Energy 7(3), 985–995 (2016)CrossRefGoogle Scholar
  59. 59.
    Naily, N.E., Saad, S.M., Hussein, T., et al.: Minimizing the impact of distributed generation of a weak distribution network with an artificial intelligence technique. Appl. Solar Energy 53(2), 109–122 (2017)CrossRefGoogle Scholar
  60. 60.
    Yeh, C.C., Chen, C.S., Ku, T.T., et al.: Mitigation of voltage variation by REMS for distribution feeders. IEEE Trans. Ind. Appl. 53(2), 901–907 (2017)CrossRefGoogle Scholar
  61. 61.
    Wu, J., Guan, X.: Coordinated multi-microgrids optimal control algorithm for smart distribution management system. IEEE Trans. SMART Grid 4(4), 2174–2181 (2013)CrossRefGoogle Scholar
  62. 62.
    Agalgaonkar, Y.P., Pal, B.C., Jabr, R.A.: Distribution voltage control considering the impact of PV generation on tap changers and autonomous regulators. IEEE Trans. Power Syst. 29(1), 182–192 (2014)CrossRefGoogle Scholar
  63. 63.
    Mahmud, K., Town, G.E., Hossain, M.J.: Mitigating the impact of rapid changes in photovoltaic power generation on network voltage. IEEE Power Energy Conference PECI, USA, pp. 1–6 (2017)Google Scholar
  64. 64.
    Quijano, D.A., Wang, J., Sarker, M.R., Feltrin, A.P.: Stochastic assessment of distributed generation hosting capacity and energy efficiency in active distribution networks. IET Gener. Transm. Distrib. 11(18), 4617–4625 (2017)CrossRefGoogle Scholar
  65. 65.
    Abbasi, F., Hosseini, S.M.: “Optimal DG allocation and sizing in presence of storage systems considering network configuration effects in distribution systems. IET Gener. Transm. Distrib. 10(3), 617–624 (2016)CrossRefGoogle Scholar
  66. 66.
    Mahmoud, K., Yorino, N., Ahmed, A.: Optimal distributed generation allocation in distribution systems for loss minimization. IEEE Trans. Power Syst. 31(2), 960–969 (2016)CrossRefGoogle Scholar
  67. 67.
    Tolabi, H.B., Hasan Ali, M., Rizwan, M.: Simultaneous reconfiguration, optimal placement of DSTATCOM, and photovoltaic array in a distribution system based on fuzzy-ACO approach. IEEE Trans. Sustain. Energy 6(1), 210–218 (2015)CrossRefGoogle Scholar
  68. 68.
    Hariri, A., Faruque, M.O.: A hybrid simulation tool for the study of PV integration impacts on distribution networks. IEEE Trans. Sustain. Energy 8(2), 648–657 (2017)CrossRefGoogle Scholar
  69. 69.
    Martin, D.S., Lemon, S.: Simplified modeling of low voltage distribution networks for PV voltage impact studies. IEEE Trans. Smart Grid 7(4), 1924–1931 (2015)CrossRefGoogle Scholar
  70. 70.
    IEEE guide for conducting distribution impact studies for distributed resource interconnection. In: IEEE Standard 1547.7-2013, pp. 1–137 (2014)Google Scholar
  71. 71.
    IEEE Application Guide for IEEE std 1547. In: IEEE Standard for interconnecting distributed resources with electric power systems. IEEE standard 1547 2-2008, pp. 1–207 (2009)Google Scholar
  72. 72.
    Wu, Y.K., Lin, J.H., Lin, H.J.: Standards and guides for grid-connected photovoltaic generation systems: a review and comparison. IEEE Trans. Ind. Appl. 53(4), 3205–3216 (2017)CrossRefGoogle Scholar
  73. 73.
    Halamay, D., Brekken, T., et al.: Reserve requirement impacts of large-scale integration of wind, solar, and ocean wave power generation. IEEE Trans. Sustain. Energy 2(3), 321–328 (2011)CrossRefGoogle Scholar
  74. 74.
    Ibanez, E., Krad, I. et al.: Impacts of short-term solar power forecasts in system operations. In: IEEE transmission and distribution conference, conference proceedings, USA, pp. 1–5 (2016)Google Scholar
  75. 75.
    Ela, E., O’Malley, M.: Studying the variability and uncertainty impacts of variable generation at multiple timescales. IEEE Trans. Power Syst. 27(3), 1324–1333 (2012)CrossRefGoogle Scholar
  76. 76.
    Akagi, H., Kanzawa, Y., Nabae, A.: Instantaneous reactive power compensators comprising switching devices without energy components. IEEE Trans. Ind. Application 20(3), 625–630 (1984)CrossRefGoogle Scholar
  77. 77.
    Akagi, H., Kanzawa, Y., Nabae, A.: Generalized theory of the instantaneous reactive power in three-phase circuits. Int. Power Electronics Conference IPEC’83, Tokyo, Japan, pp. 1375–1386Google Scholar
  78. 78.
    Czarnecki, L.S.: Instantaneous reactive power P-Q theory and power properties of three-phase systems. IEEE Trans. Power Delivery 21(1), 362–367 (2006)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Azab, M.: Flexible PQ control for single-phase grid-tied photovoltaic inverter. In: 17th IEEE Int. Conf. on Environment and Electrical Engineering EEEIC, Conference Proceedings, Italy, pp. 1–6 (2017)Google Scholar
  80. 80.
    Yang, Y., Blaabjerg, F., et al.: Power control flexibilities for grid-connected multi-functional photovoltaic inverters. IET Renew. Power Gener. 10(4), 504–513 (2016)CrossRefGoogle Scholar
  81. 81.
    Liu, L., Li, H., Xue, Y., Liu, W.: Reactive power compensation and optimization strategy for grid-interactive cascaded photovoltaic systems. IEEE Trans. Power Electron. 30(1), 188–202 (2015)CrossRefGoogle Scholar
  82. 82.
    Vita, V., Ekonomu, L., Christodoulu, C.A.: The impact of distributed generation to the lightning protection of modern distribution lines. Energy Syst. 7(2), 357–364 (2016). (Springer Verlag Publisher) CrossRefGoogle Scholar
  83. 83.
    Kawabe, K., Tanaka, K.: Impact of dynamic behavior of photovoltaic power generation systems on short-term voltage stability. IEEE Trans. Power Syst. 30, 3416–3424 (2015)CrossRefGoogle Scholar
  84. 84.
    Kou, W., Jung, S.H., Park, S.Y.: Optimal location strategy for distributed generation to maximize system voltage stability based on line sensitivity factors. Energy Syst (2017). (Springer Verlag Publisher) CrossRefGoogle Scholar
  85. 85.
    Guangya, Y., et al.: Voltage rise mitigation for solar PV integration at LV grids. J. Modern Power Syst. Clean Energy. 3(3), 411–421 (2015). (Springer Verlag Publisher) CrossRefGoogle Scholar
  86. 86.
    Dominguez, M., et al.: Optimal siting and sizing of renewable energy sources, storage devices, and reactive support devices to obtain a sustainable electrical distribution systems. Energy Syst (2017). (Springer Verlag Publisher) CrossRefGoogle Scholar
  87. 87.
    Aman, M., Jasmon, G., Bakar, A., Mokhlis, H.: A new approach for optimum DG placement and sizing based on voltage stability maximization and minimization of power losses. Energy Convers. Manag. 70, 202–210 (2013)CrossRefGoogle Scholar
  88. 88.
    Dixit, M., Kundu, P., Jariwala, H.R.: Integration of distributed generation for assessment of distribution system reliability considering power loss, voltage stability and voltage deviation. Energy Syst. (2017). (Springer Verlag Publisher) CrossRefGoogle Scholar
  89. 89.
    Jimenez, L.A.F., Jimenez, A.M., Falces, A., et al.: Short-term power forecasting system for photovoltaic plants. Renew. Energy 44, 311–317 (2012)CrossRefGoogle Scholar
  90. 90.
    Bacher, P., Madsen, H., Nielsen, H.: Online short-term solar power forecasting. Sol. Energy 83(10), 1772–1783 (2009)CrossRefGoogle Scholar
  91. 91.
    Anvari, M., et al.: Short term fluctuations of wind and solar power systems. N. J. Phys. 18, 063027 (2016). (IOP Publishing, Germany) CrossRefGoogle Scholar
  92. 92.
    Hansen, C.W., Stein, J.S., Riley, D.: Effect of time scale on analysis of PV system performance. Sandia Report, SAND2012-1099, Sandia National Laboratories, Albuquerque, California, USAGoogle Scholar
  93. 93.
    Marquez, R., Coimbra, C.: Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 91, 327–336 (2013)CrossRefGoogle Scholar
  94. 94.
    Roy, S.: Worst-case temporal aggregate power ramp distributions for a PAC wind turbine. Energy Syst (2017). (Springer Verlag Publisher) CrossRefGoogle Scholar
  95. 95.
    Akcay, H., Filik, T., Yan, J.: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values. Appl. Energy 191, 653–662 (2017)CrossRefGoogle Scholar
  96. 96.
    Osrio, G.J., Matias, J., Catal, J.: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 75, 301–307 (2015)CrossRefGoogle Scholar
  97. 97.
    Zhang, X., Wang, J., Zhang, K.: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm. Electr. Power Syst. Res. 146, 270–285 (2017)CrossRefGoogle Scholar
  98. 98.
    Ghiani, E., Pilo, F.: Smart inverter operation in distribution networks with high penetration of photovoltaic systems. J. Modern Power Syst. Clean Energy 3(4), 504–511 (2015). (Springer Verlag Publisher) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.EEET DepartmentYanbu Industrial CollegeYanbuKingdom of Saudi Arabia

Personalised recommendations