Advertisement

Microstructure, Corrosion Behaviour and Microhardness of Non-equiatomic Fe1.5CoNiCrCux (0.5 ≤ x ≤ 2.0) High-Entropy Alloys

  • Man ZhuEmail author
  • Kun Li
  • Yongqin Liu
  • Zhijun Wang
  • Lijuan Yao
  • Yang Fa
  • Zengyun Jian
Technical Paper
  • 23 Downloads

Abstract

The microstructure, electrochemical corrosion behaviour and microhardness of Fe1.5CoNiCrCux (x = 0.5, 1.0, 1.5 and 2.0) high-entropy alloys (HEAs) were investigated by X-ray diffraction (XRD), scanning electron microscopy and an electrochemical workstation. The XRD spectra of Fe1.5CoNiCrCux HEAs confirmed the face-centred cubic solid solution structure and that all specimens consisted of an fcc matrix and a Cu-rich fcc phase. The results of electrochemical corrosion tests showed that Fe1.5CoNiCrCu0.5 HEAs exhibited low corrosion rates owing to their high corrosion potential and low corrosion current density. The major types of corrosion for Fe1.5CoNiCrCux HEAs belong to localised corrosion and pitting, which is attributed to Cu-rich and Cr-depleted phases in the interdendritic region. The microhardness of Fe1.5CoNiCrCux HEAs increases from 142 HV for alloys with x = 0.5 to 190 HV for alloys with x = 2.0.

Keywords

FeCoNiCrCu High-entropy alloy Microstructure Corrosion properties Microhardness 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant nos. 51301125, 51671151), China Scholarship Council (CSC) and Key Laboratory Scientific Research Program of Education Department of Shaanxi Province, China (Grant no. 17JS055).

References

  1. 1.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater6 (2004) 299.CrossRefGoogle Scholar
  2. 2.
    Yeh J W, Chang S Y, Hong Y D, Chen S K, and Lin S J, Mater Chem Phys103 (2007) 41.CrossRefGoogle Scholar
  3. 3.
    Zhou Y J, Zhang Y, Wang Y L, and Chen G L, Appl Phys Lett90 (2007) 181904.CrossRefGoogle Scholar
  4. 4.
    Saikumaran A, Mythili R, Saroja S, and SrihariYe V, T Indian I Met72 (2019) 111.CrossRefGoogle Scholar
  5. 5.
    Chen Y Y, Dural T, Hung U D, Yeh J W, and Shih H C, Corros Sci47 (2005) 2257.CrossRefGoogle Scholar
  6. 6.
    Laws K J, Crosby C, Sridhar A, Conway P, Koloadin L S, Zhao M, Aron-Dine S, and Bassman L C, J Alloys Compd650 (2015) 949.CrossRefGoogle Scholar
  7. 7.
    Zhang H, Pan Y, and He Y Z, Mater Des32 (2011) 1910.CrossRefGoogle Scholar
  8. 8.
    Miracle D B, Senkov O N, Acta Mater122 (2017) 448.CrossRefGoogle Scholar
  9. 9.
    Xu X D, Liu P, Guo S, Hirata A, Fujita T, Nieh T G, Liu C T, and Chen M W, Acta Mater84 (2015) 145.CrossRefGoogle Scholar
  10. 10.
    Wang Z Q, Wang X R, Yue H, Shi G T, and Wang S H, Mater Sci Eng A627 (2015) 391.CrossRefGoogle Scholar
  11. 11.
    Wu P H, Liu N, Yang W, Zhu Z X, Lu Y P, and Wang X J, Mater Sci Eng A642 (2015) 142.CrossRefGoogle Scholar
  12. 12.
    He F, Wang Z J, Zhu M, Li J J, Dang Y Y, and Wang J C, Mater Des85 (2015) 1.CrossRefGoogle Scholar
  13. 13.
    He J Y, Wang H, Wu Y, Liu X J, Mao H H, Nieh T G, and Lu Z P, Intermetallics79 (2016) 41.CrossRefGoogle Scholar
  14. 14.
    Lu Y P, Dong Y, Guo S, Jiang L, Kang H J, Wang T M, Wen B, Wang Z J, Jie J C, Cao Z Q, Ruan H H, and Li T J, Sci Rep4 (2014) 6200.CrossRefGoogle Scholar
  15. 15.
    Hsu Y J, Chiang W C, and Wu J K, Mater Chem Phys92 (2005) 112.CrossRefGoogle Scholar
  16. 16.
    Lin C M, and Tsai H L, Mater Chem Phys128 (2011) 50.CrossRefGoogle Scholar
  17. 17.
    Lin C M, and Tsai H L, J Alloys Compd489 (2010) 30.CrossRefGoogle Scholar
  18. 18.
    YB/T 5337–2006, The Lattice Constant Determination of Metals–Method of X–ray Diffractometer (2006) p. 278.Google Scholar
  19. 19.
    Du W D, Liu N, Zhou P J, Wang X J, Wang B, and Peng Z, Int J Mater Res109 (2018) 844.CrossRefGoogle Scholar
  20. 20.
    Verma A, Tarate P, Abhyankar A C, Mohape M R, Gowtam D S, Deshmukh V P, and Shanmugasundaram T, Scr Mater161 (2019) 28.CrossRefGoogle Scholar
  21. 21.
    de Boer F R, Boom R, Mattens W C M, Miedema A R, and Niessen A K, Cohesion and Structures Vol.1: Cohesion in MetalsTransition Metal Alloys, North Holland, Amsterdam (1988), p. 179.Google Scholar
  22. 22.
    Ismail K M, Fathi A M, and Badawy W A, Corro Sci48 (2006) 1912.CrossRefGoogle Scholar
  23. 23.
    Hurtado M R F, Simodjo P T A, and Benedetti A V, Electrochim Acta48 (2003) 2791.CrossRefGoogle Scholar
  24. 24.
    Lin C M, Tsai H L, and Bor H Y, Intermetallics18 (2010) 1244.CrossRefGoogle Scholar
  25. 25.
    Badawy W A, Al-Kharafi F M, and El-Azab A S, Corros Sci41 (1999) 709.CrossRefGoogle Scholar
  26. 26.
    Rosalbino F, Angelini E, Zanicchi G, Carlini R, and Marazza R, Electrochim Acta54 (2009) 7231.CrossRefGoogle Scholar
  27. 27.
    Yang X, and Zhang Y. Mater Chem Phys132 (2012) 233.CrossRefGoogle Scholar
  28. 28.
    Guo S, Ng C, Lu J, and Liu C T, J Appl Phys109 (2011) 103505.CrossRefGoogle Scholar
  29. 29.
    Guo S, and Liu C T, Prog Nat Sci21 (2011) 433.CrossRefGoogle Scholar
  30. 30.
    Chen H H, Metallic Corrosion, Beijing Institute of Technology Press, Beijing (1995), p. 86.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Materials and Chemical EngineeringXi’an Technological UniversityXi’anPeople’s Republic of China
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations