Microstructure, Corrosion Behaviour and Microhardness of Non-equiatomic Fe1.5CoNiCrCux (0.5 ≤ x ≤ 2.0) High-Entropy Alloys
- 23 Downloads
Abstract
The microstructure, electrochemical corrosion behaviour and microhardness of Fe1.5CoNiCrCux (x = 0.5, 1.0, 1.5 and 2.0) high-entropy alloys (HEAs) were investigated by X-ray diffraction (XRD), scanning electron microscopy and an electrochemical workstation. The XRD spectra of Fe1.5CoNiCrCux HEAs confirmed the face-centred cubic solid solution structure and that all specimens consisted of an fcc matrix and a Cu-rich fcc phase. The results of electrochemical corrosion tests showed that Fe1.5CoNiCrCu0.5 HEAs exhibited low corrosion rates owing to their high corrosion potential and low corrosion current density. The major types of corrosion for Fe1.5CoNiCrCux HEAs belong to localised corrosion and pitting, which is attributed to Cu-rich and Cr-depleted phases in the interdendritic region. The microhardness of Fe1.5CoNiCrCux HEAs increases from 142 HV for alloys with x = 0.5 to 190 HV for alloys with x = 2.0.
Keywords
FeCoNiCrCu High-entropy alloy Microstructure Corrosion properties MicrohardnessNotes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant nos. 51301125, 51671151), China Scholarship Council (CSC) and Key Laboratory Scientific Research Program of Education Department of Shaanxi Province, China (Grant no. 17JS055).
References
- 1.Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater6 (2004) 299.CrossRefGoogle Scholar
- 2.Yeh J W, Chang S Y, Hong Y D, Chen S K, and Lin S J, Mater Chem Phys103 (2007) 41.CrossRefGoogle Scholar
- 3.Zhou Y J, Zhang Y, Wang Y L, and Chen G L, Appl Phys Lett90 (2007) 181904.CrossRefGoogle Scholar
- 4.Saikumaran A, Mythili R, Saroja S, and SrihariYe V, T Indian I Met72 (2019) 111.CrossRefGoogle Scholar
- 5.Chen Y Y, Dural T, Hung U D, Yeh J W, and Shih H C, Corros Sci47 (2005) 2257.CrossRefGoogle Scholar
- 6.Laws K J, Crosby C, Sridhar A, Conway P, Koloadin L S, Zhao M, Aron-Dine S, and Bassman L C, J Alloys Compd650 (2015) 949.CrossRefGoogle Scholar
- 7.Zhang H, Pan Y, and He Y Z, Mater Des32 (2011) 1910.CrossRefGoogle Scholar
- 8.Miracle D B, Senkov O N, Acta Mater122 (2017) 448.CrossRefGoogle Scholar
- 9.Xu X D, Liu P, Guo S, Hirata A, Fujita T, Nieh T G, Liu C T, and Chen M W, Acta Mater84 (2015) 145.CrossRefGoogle Scholar
- 10.Wang Z Q, Wang X R, Yue H, Shi G T, and Wang S H, Mater Sci Eng A627 (2015) 391.CrossRefGoogle Scholar
- 11.Wu P H, Liu N, Yang W, Zhu Z X, Lu Y P, and Wang X J, Mater Sci Eng A642 (2015) 142.CrossRefGoogle Scholar
- 12.He F, Wang Z J, Zhu M, Li J J, Dang Y Y, and Wang J C, Mater Des85 (2015) 1.CrossRefGoogle Scholar
- 13.He J Y, Wang H, Wu Y, Liu X J, Mao H H, Nieh T G, and Lu Z P, Intermetallics79 (2016) 41.CrossRefGoogle Scholar
- 14.Lu Y P, Dong Y, Guo S, Jiang L, Kang H J, Wang T M, Wen B, Wang Z J, Jie J C, Cao Z Q, Ruan H H, and Li T J, Sci Rep4 (2014) 6200.CrossRefGoogle Scholar
- 15.Hsu Y J, Chiang W C, and Wu J K, Mater Chem Phys92 (2005) 112.CrossRefGoogle Scholar
- 16.Lin C M, and Tsai H L, Mater Chem Phys128 (2011) 50.CrossRefGoogle Scholar
- 17.Lin C M, and Tsai H L, J Alloys Compd489 (2010) 30.CrossRefGoogle Scholar
- 18.YB/T 5337–2006, The Lattice Constant Determination of Metals–Method of X–ray Diffractometer (2006) p. 278.Google Scholar
- 19.Du W D, Liu N, Zhou P J, Wang X J, Wang B, and Peng Z, Int J Mater Res109 (2018) 844.CrossRefGoogle Scholar
- 20.Verma A, Tarate P, Abhyankar A C, Mohape M R, Gowtam D S, Deshmukh V P, and Shanmugasundaram T, Scr Mater161 (2019) 28.CrossRefGoogle Scholar
- 21.de Boer F R, Boom R, Mattens W C M, Miedema A R, and Niessen A K, Cohesion and Structures Vol.1: Cohesion in Metals–Transition Metal Alloys, North Holland, Amsterdam (1988), p. 179.Google Scholar
- 22.Ismail K M, Fathi A M, and Badawy W A, Corro Sci48 (2006) 1912.CrossRefGoogle Scholar
- 23.Hurtado M R F, Simodjo P T A, and Benedetti A V, Electrochim Acta48 (2003) 2791.CrossRefGoogle Scholar
- 24.Lin C M, Tsai H L, and Bor H Y, Intermetallics18 (2010) 1244.CrossRefGoogle Scholar
- 25.Badawy W A, Al-Kharafi F M, and El-Azab A S, Corros Sci41 (1999) 709.CrossRefGoogle Scholar
- 26.Rosalbino F, Angelini E, Zanicchi G, Carlini R, and Marazza R, Electrochim Acta54 (2009) 7231.CrossRefGoogle Scholar
- 27.Yang X, and Zhang Y. Mater Chem Phys132 (2012) 233.CrossRefGoogle Scholar
- 28.Guo S, Ng C, Lu J, and Liu C T, J Appl Phys109 (2011) 103505.CrossRefGoogle Scholar
- 29.Guo S, and Liu C T, Prog Nat Sci21 (2011) 433.CrossRefGoogle Scholar
- 30.Chen H H, Metallic Corrosion, Beijing Institute of Technology Press, Beijing (1995), p. 86.Google Scholar