Advertisement

Effect of Ni on Microstructure and Mechanical Properties of CrMnFeCoNi High Entropy Alloy

  • Suresh KoppojuEmail author
  • Satya Prasad Konduri
  • Prashanthi Chalavadi
  • Srinivasa Rao Bonta
  • Ramakrishna Mantripragada
Technical Paper
  • 52 Downloads

Abstract

The effect of Ni content on microstructure and mechanical properties of the CrMnFeCoNi high entropy alloy (HEA) has been studied. The Ni content varied from 0 to 20 at% in the composition (CrMnFeMn)100−xNix, where x = 0, 2.5, 5, 10, 15, and 20 at%. The alloys were synthesized by vacuum arc melting and the microstructure as well as hardness of the as-cast alloys were studied. Alloys with low Ni content (x ≤ 2.5%) consists of a two-phase microstructure of dendritic and inter-dendritic regions with fcc (matrix) and tetragonal (sigma) crystal structure, respectively. When the Ni content is 5 at%, two-phase structure with fcc (matrix) and bcc (secondary phase) is observed, with the addition of Mn-rich inclusions that are present in the entire matrix. Alloys with higher Ni content (x ≥ 10, at%) exhibit a single phase of fcc structure. Hardness of the HEAs decreases from 320 to 120 Hv with increase in Ni content, and the high hardness of these alloys with low Ni content is due to the mixture of both fcc and hard tetragonal (sigma) phases.

Keywords

High entropy alloy Microstructure Transmission electron microscopy 

Notes

Acknowledgements

Authors would like to acknowledge Dr. Ravi C Gundakaram for his help with the manuscript and Ms. K. Anjali for calculations of the entropy parameters.

Supplementary material

12666_2019_1838_MOESM1_ESM.tif (181 kb)
Fig. S1Volume fraction of the secondary phases in the as-cast (CrMnFeCo)100-xNix HEA with Ni content. The secondary phase for the alloy with x=0 and 2.5 is the tetragonal phase, and the secondary phase for the other alloys is islands (Mn-rich particles) (TIFF 181 kb)
12666_2019_1838_MOESM2_ESM.tif (3.1 mb)
Fig. S2(a) Bright field image of the as-cast (CrCoFeMn)1-xNix HEA with x=2.5 at.%, (b) SAED shows the two-phase structure of fcc and tetragonal. SAED patterns from bright and dark regions correspond to fcc and tetragonal phases, respectively (TIFF 3131 kb)
12666_2019_1838_MOESM3_ESM.tif (759 kb)
Fig. S3Bright field image of the as-cast (CrCoFeMn)1-xNix HEA with x=5 at.% shows the presence of Mn-rich particle. Inset to the figure shows the EDS spectra from Mn-rich particle (TIFF 758 kb)
12666_2019_1838_MOESM4_ESM.tif (4.7 mb)
Fig. S4Bright field images of the as-cast (CrCoFeMn)1-xNix HEA with (a) x=10 and x=15 at.%. Inset to the figures shows SAED patterns from the corresponding regions (TIFF 4776 kb)

References

  1. 1.
    Cantor B, Chang I T H, Knight P, and Vincent A J B, Mater Sci Eng A375–377 (2004) 213.CrossRefGoogle Scholar
  2. 2.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T et al., Adv Eng Mater6 (2004) 299.CrossRefGoogle Scholar
  3. 3.
    Praveen S, Murty B S, and Kottada R S, Mater Sci Eng A534 (2012) 83.CrossRefGoogle Scholar
  4. 4.
    Zhuang Y X, Liu W J, Chen Z Y, Xue H D, and He J C, Mater Sci Eng A556 (2012) 395.CrossRefGoogle Scholar
  5. 5.
    Tsau C H, Mater Sci Eng A501 (2009) 81.CrossRefGoogle Scholar
  6. 6.
    Otto F, Dlouhy A, Somsen C, Bei H, Eggeler G, and George E P, Acta Mater61 (2013) 5743.CrossRefGoogle Scholar
  7. 7.
    Shi P J, Ren W L, Zheng T X, Ren Z M, Hou X L, Peng J C, Hu P F, Gao Y F, Zhong Y B, and Liaw P K, Nat Commun10 (2019) 8.CrossRefGoogle Scholar
  8. 8.
    Lee C, Song G, Gao MC, Feng R, Chen P, Brechtl J, Chen Y, An K, Guo W, Poplawsky J D, Li S, Samaei A T, Chen W, Hu A, Choo H, and Liaw P K, Acta Mater160 (2018) 158.Google Scholar
  9. 9.
    Zhiming Li and Raabe D, JOM69 (2017) 2099.  https://doi.org/10.1007/s11837-017-2540-2.CrossRefGoogle Scholar
  10. 10.
    Choi W M, Jo Y H, Sohn S S, Lee S, and Lee B-J, NPJ Comput Mater4 (2018) 1.  https://doi.org/10.1038/s41524-017-0060-9.CrossRefGoogle Scholar
  11. 11.
    Li Z, Pradeep K G, Deng Y, Raabe D, and Tasan C C, Nature534 (2016) 227.CrossRefGoogle Scholar
  12. 12.
    Fang W, Chang R, Ji P, Zhang X, Liu B, Qu X, and Yin F, Metals8 (2018) 369  https://doi.org/10.3390/met8050369.CrossRefGoogle Scholar
  13. 13.
    Li Z, Kormann F, Grabowski B, Neugebauer J, and Raabe D, Acta Mater136 (2017) 262.CrossRefGoogle Scholar
  14. 14.
    Zhu Z G, Ma K H, Yang X, and Shek C H, J Alloys Compd695 (2017) 2945.CrossRefGoogle Scholar
  15. 15.
    Yaws C L, Safety and Health Related Properties for Organic and Inorganic Chemicals, McGrahill Publication, New York (1999) p 182.Google Scholar
  16. 16.
    Shahmir H, He J, Lu Z, Kawasaki M, and Langdon T G, Mater Sci Eng A676 (2016) 294.CrossRefGoogle Scholar
  17. 17.
    Singh P, Marshal A, Smirnov A V, Sharma A, Balasubramanian G, Pradeep K G, and Johnson D D, Phys Rev Mater 3 (2019) 075002.  https://doi.org/10.1103/PhysRevMaterials.3.07500.CrossRefGoogle Scholar
  18. 18.
    Laplanche G, Gadaud P, Horst O, Otto F, Eggeler G, and George E P, J Alloys Compd623 (2015) 348.  https://doi.org/10.1016/j.jallcom.2014.11.061.CrossRefGoogle Scholar
  19. 19.
    Cho K, Fujioka Y, Nagase T, and Yasuda H Y, Mater Sci Eng A735 (2018) 191.CrossRefGoogle Scholar
  20. 20.
    Salishchev G A, Tikhonovsky M A, Shaysultanov D G, Stepanov N D, Kuznetsov A V, Kolodiy I V, Tortika A S, and Senkov O N, J Alloys Compd591 (2014) 11.CrossRefGoogle Scholar
  21. 21.
    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, and Ritchie R O, Science345 (2014), 1153.CrossRefGoogle Scholar
  22. 22.
    Kubaschewski O, Phase Diagrams of Binary FeBased Systems, Springer, Berlin (1982).Google Scholar
  23. 23.
    Turchi P E A, Reinhard L, and Stocks G M, Phys Rev B Condens Matter Mater Phys50 (1994) 15542.CrossRefGoogle Scholar
  24. 24.
    Yakel H L, Acta Cryst Sec B Struct Sci39 (1983) 20.CrossRefGoogle Scholar
  25. 25.
    Stepanov N D, Shaysultanov D G, Salishchev G A, Tikhonovsky M A, Oleynik E E, Tortika A S, and Senkov O N, J Alloys Compd, 628 (2015) 170.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, and Lu Z P, Prog. Mater Sci61 (2011) 1.CrossRefGoogle Scholar
  27. 27.
    Guo S and Liu C T, Prog Nat Sci Mater Int21 (2011), 433.CrossRefGoogle Scholar
  28. 28.
    Guo S, Ng C, Lu J, and Liu C T, J Appl Phys109 (2011) 645.Google Scholar
  29. 29.
    Yang X and Zhang Y, Mater Chem Phys132 (2012) 233.CrossRefGoogle Scholar
  30. 30.
    Guo S, Hu Q, Ng C, and Liu C T, Intermetallics41 (2013) 96.CrossRefGoogle Scholar
  31. 31.
    Murty B S, Yeh J W, and Ranganathan S, High Entropy Alloys, Elsevier, London (2014).Google Scholar
  32. 32.
    Tsai M H, Tsai K Y, Tsai C W, Lee C, Juan C C, and Yeh J W, Mater Res Lett1 (2013) 207.CrossRefGoogle Scholar
  33. 33.
    Tsai M-H, Chang K-C, Li J-H, Tsai R-C, and Cheng A-H, Mater Res Lett4 (2016) 90.  https://doi.org/10.1080/21663831.2015.1121168.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Centre for Materials and Characterization and Testing (CMCT)International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI)HyderabadIndia
  2. 2.Department of MetallurgyNational Institute of Technology-WarangalWarangalIndia

Personalised recommendations