Advertisement

Wear and Fatigue Behaviour of Deep Cryogenically Treated H21 Tool Steel

  • Dileep KoradeEmail author
  • Kavuluri Venkata Ramana
  • Kirankumar JagtapEmail author
Technical Paper
  • 7 Downloads

Abstract

The influence of deep cryotreatment before and after double tempering on hardness, wear rate, surface finish and fatigue limit of AISI H21 tool steel has been examined. In the present work, H21 tool steel has been subjected to heat treatment at 1195 °C, double tempering at 540 °C, deep cryotreatment at − 185 °C and soft tempering at 100 °C. The microstructure of samples has been characterized for the number density of carbides, hardness, wear rate, surface roughness and fatigue limit. The fatigue test has been carried out using a rotating bending fatigue machine to study the fatigue strength of the material. The obtained results show that the HTTC24 specimen reduces the wear rate by ≈ 24% and surface roughness by ≈ 21% with an increase in fatigue limit by ≈ 13% compared to HTT specimens. This has been attributed to the increased number density of carbides and hardness; and approximately the complete conversion of retained austenite content into martensite.

Keywords

H21 tool steel Deep cryotreatment Carbide density Wear rate Surface roughness Fatigue limit 

Notes

Acknowledgements

Dr. N.B. Dhokey, Professor, Department of Metallurgy and Materials Science, COEP, Pune-411005, India; is greatly acknowledged for valuable suggestions and providing laboratory facilities to complete the present work. Also, Dr. Tarang Shinde is gratefully thanked for providing his technical suggestions.

References

  1. 1.
    Hanief M, and Wani M F, Mater Lett176 (2016) 91.CrossRefGoogle Scholar
  2. 2.
    Li L, Kim M, Lee S, Bae M, and Lee D, Surf Coat Technol307A (2016) 517.CrossRefGoogle Scholar
  3. 3.
    Bensouilah H, Aouici H, Meddour I, Yallese M A, Mabrouki T, and Girardin F, Measurement82 (2016) 1.CrossRefGoogle Scholar
  4. 4.
    Dhar N R, and Kamruzzaman M, Int J Mach Tool Manuf47 (2007) 754.CrossRefGoogle Scholar
  5. 5.
    Leadebal Jr W V, de Melo A C A, de Oliveira A J, and Castro N A, J Braz Soc Mech Sci Eng40 (2018).  https://doi.org/10.1007/s40430-017-0922-6
  6. 6.
    Korade D N, Ramana K V, Jagtap K R, and Dhokey N B, Mater Today Proc4 (2017) 7665.CrossRefGoogle Scholar
  7. 7.
    Shinde T, and Dhokey N B, Surf Eng33 (2017) 944.CrossRefGoogle Scholar
  8. 8.
    Korade D, Ramana K V, and Jagtap K, Mat Res22 (2019) e20170745.  https://doi.org/10.1590/1980-5373-MR-2017-0745 CrossRefGoogle Scholar
  9. 9.
    Shinde T, Dhokey N B, Metallogr Microstruct Anal6 (2017) 398.CrossRefGoogle Scholar
  10. 10.
    Bensely A, Shyamala L, Harish S, Lal D M, Nagarajan G, Junik K, and Rajadurai A, Mater Des30 (2009) 2955.CrossRefGoogle Scholar
  11. 11.
    Zhirafar S, Rezaeian A, and Pugh V, J Mater Process Technol186 (2007) 298.CrossRefGoogle Scholar
  12. 12.
    Farrahi G H, and Ghadbeigi H, J Mater Process Technol174 (2006) 318.CrossRefGoogle Scholar
  13. 13.
    Baldissera P, Mater Des30 (2009) 3636.CrossRefGoogle Scholar
  14. 14.
    Cerny I, Mikulova D, and Furbacher I, Mater Manuf Process26 (2011) 1.CrossRefGoogle Scholar
  15. 15.
    Schino A D, and Kenny J M, Mater Lett57 (2003) 3182.CrossRefGoogle Scholar
  16. 16.
    Ebara R. Int J Fatigue32 (2010) 830.CrossRefGoogle Scholar
  17. 17.
    Bayoumi M R, and Abdellatif A K, Eng Fract Mech51 (1995) 861.CrossRefGoogle Scholar
  18. 18.
    Ryu J H, and Nam S W, Int J Fatigue11(6) (1989) 433.CrossRefGoogle Scholar
  19. 19.
    Roberts G, Krauss G, and Kennedy R, Tool Steel, 5th ed. ASM International, Materials Park (1998), p 219–250.Google Scholar
  20. 20.
    Dhokey N B, Hake A, Kadu S, Bhoskar I, and Dey G K, Metall Mater Trans A45 (2014) 1508.CrossRefGoogle Scholar
  21. 21.
    Das D, Sarkar R, Dutta A K, and Ray K K, Mater Sci Eng A528 (2010) 589.CrossRefGoogle Scholar
  22. 22.
    Nurbanasari M, Tsakiropoulos P, and Palmiere E J, Adv Mat Res1043 (2014) 159.Google Scholar
  23. 23.
    Bensely A, Prabhakaran A, Lal D M, and Nagarajan G, Cryogenics45 (2006) 747.CrossRefGoogle Scholar
  24. 24.
    Dhokey N B, Hake A R, Thavale V T, Gite R, and Batheja R, Curr Adv Mat Sci Res1 (2014) 23.CrossRefGoogle Scholar
  25. 25.
    Suchmann P, and Niznanska J, J Achiev Mater Manuf Eng73 (2015) 21.Google Scholar
  26. 26.
    Dhokey N B, and Dandawate J V, Trans Indian Inst Met65 (2012) 405.CrossRefGoogle Scholar
  27. 27.
    Shinde T, and Dhokey N B, in Surface Roughness and Fatigue Limit of Die Steels, Proceedings of Fatigue, Durability and Fracture Mechanics, (ed) Seetharamu S, Rao K, and Khare R, Springer, Singapore, (2018), p 237.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKoneru Lakshmaiah Education FoundationVaddeswaramIndia
  2. 2.Department of Mechanical EngineeringSinhgad Institute of Technology and SciencePuneIndia

Personalised recommendations