Effect of Fe Addition to Binder Phase on Mechanical Properties of Tungsten Heavy Alloy

  • P. V. Satyanarayana
  • B. Blessto
  • R. Sokkalingam
  • C. Rambabu
  • K. SivaprasadEmail author
Technical Paper


In the present work, tungsten heavy alloys (WHA) in two different compositions (92 wt% W–2:1 wt% Ni/Co and 92 wt% W–2:1:1 wt% Ni/Co/Fe) were synthesized through liquid phase sintering followed by swaging and thermal treatment. Microstructure and mechanical properties were analyzed to study the effect of the binder composition on the WHA. The W–Ni–Co alloy has lower matrix volume fraction, finer tungsten particle size and low contiguity when matched to the W–Ni–Co–Fe alloy. Mechanical investigations such as tensile, Charpy and hardness were tested and were correlated with the microstructural features. W–Ni–Co alloy showed higher strength, hardness and impact due to more solubility of tungsten in the binder and low contiguity. Hence, Fe addition to binder has resulted in degradation in required properties. For further enhancement in strength, aging has been carried out at 500 °C for 1 h and improved strength is obtained at the marginal expense of ductility. W–Ni–Co alloy has a much higher Charpy impact value of 127 J when compared to alloy with Fe addition (55 J) due to lower dissolution of tungsten into the binder matrix.


Tungsten heavy alloy (WHA) Tensile properties and Charpy impact testing Kocks–Mecking plot Liquid phase sintering (LPS) 



  1. 1.
    Das J, Appa Rao G, and Pabi S K, Mater Sci Eng A 527 (2010) 7841.CrossRefGoogle Scholar
  2. 2.
    Smid I, Akiba M, Vieider G, and Plochl L, J Nucl Mater258 (1998).Google Scholar
  3. 3.
    Dincer O, Pehlivanoglu M K, Caliskan N K, Karakaya İ, and Kalkanli A Int J Refract Metal Hard Mater 50 (2015) 106.CrossRefGoogle Scholar
  4. 4.
    Can A, Herrmann M, McLachlan D S, Sigalas I, and Adler J, J Eur Ceram Soc 26 (2006) 1707.CrossRefGoogle Scholar
  5. 5.
    Kocich R, Kunčická L, Dohnalík D, Macháčková A, and Šofer M, Int J Refract Metal Hard Mater61 (2016) 264.CrossRefGoogle Scholar
  6. 6.
    Bose A, Schuh C A, Tobia J C, Tuncer N, Mykulowycz N M, Preston A, Barbati A C, Kernan B, Gibson M A, Krause D, Brzezinski T, Schroers J, Fulop R, Myerberg J S, Sowerbutts M, Chiang Y-M, John Hart A, Sachs E M, Lomeli E E, and Lund A C, Int J Refract Metal Hard Mater 73 (2018) 22.CrossRefGoogle Scholar
  7. 7.
    Ravi Kiran U, Panchal A, Prem Kumar M, Sankaranarayana M, Nageswara Rao G V S, and Nandy T K, J Alloy Compd709 (2017) 609.CrossRefGoogle Scholar
  8. 8.
    Ravi Kiran U, Kumar J, Kumar V, Sankaranarayana M, Nageswara Rao G V S, and Nandy T K, Mater Sci Eng A656 (2016) 256.CrossRefGoogle Scholar
  9. 9.
    Panchal A, and Nandy T K, Mat Sci Eng A-Struct733 (2018) 374.CrossRefGoogle Scholar
  10. 10.
    Ravi Kiran U, Venkat S, Rishikesh B, Iyer V K, Sankaranarayana M, and Nandy T K, Mater Sci Eng A582 (2013) 389.CrossRefGoogle Scholar
  11. 11.
    Sambasiva Rao A, Manda P, Mohan M K, Nandy T K, and Singh A K, J Alloy Compd742 (2018) 937.CrossRefGoogle Scholar
  12. 12.
    Ryu H J, Hong S H, and Baek W H, Mater Sci Eng A-Struct291 (2000).Google Scholar
  13. 13.
    Ryu H J, and Hong S H, Mater Sci Eng A Struct363 (2003)179.CrossRefGoogle Scholar
  14. 14.
    Calıskan N K, Durlu N, and Bor S, Int J Refract Metals Hard Mater36 (2013) 260.CrossRefGoogle Scholar
  15. 15.
    Edmonds D V, and Jones P N, Metall Trans A10A (1979) 289.CrossRefGoogle Scholar
  16. 16.
    Pathak A, Panchal A, Nandy T K, and Singh A K, Int J Refract Metal Hard Mater75 (2018) 43.CrossRefGoogle Scholar
  17. 17.
    Bose A, and German R M, Metall Trans A19A (1988) 2467.CrossRefGoogle Scholar
  18. 18.
    Kumari A, Sankaranarayana M, and Nandy T K, Int J Refract Metal Hard Mater67 (2017) 18.CrossRefGoogle Scholar
  19. 19.
    Ravi Kiran U, Kumar Khaple S, Sankaranarayana M, Nageswara Rao G V S, and Nandy T K, Mater Today Proc5 (2018) 3914.CrossRefGoogle Scholar
  20. 20.
    Ravi Kiran U, Sambasiva Rao A, Sankaranarayana M, and Nandy T K, Int J Refract Metal Hard Mater33 (2012) 113.CrossRefGoogle Scholar
  21. 21.
    Kumari A, Prabhu G, Sankaranarayana M, and Nandy T K, Mater Sci Eng A688 (2017) 225.CrossRefGoogle Scholar
  22. 22.
    Das J, Kiran U R, Chakraborty A, and Prasad N E, Int J Refract Metal Hard Mater27 (2009) 577.CrossRefGoogle Scholar
  23. 23.
    Durlu N, Caliskan N K, and Bor S, Int J Refract Metal Hard Mater42 (2014) 126.CrossRefGoogle Scholar
  24. 24.
    Abspoel M, Neelis B M, and van Liempt P, J Mater Process Technol228 (2016) 34.CrossRefGoogle Scholar
  25. 25.
    Komarasamy M, Kumar N, Tang Z, Mishra R S, and Liaw P K, Mater Res Lett3 (2014) 30.CrossRefGoogle Scholar
  26. 26.
    Kocks U F, and Mecking H, Prog Mater Sci48 (2003).Google Scholar
  27. 27.
    Jang M J, Ahn D-H, Moon J, Bae J W, Yim D, Yeh J-W, Estrin Y, and Kim H S, Mater Res Lett5 (2017) 350.CrossRefGoogle Scholar
  28. 28.
    Sokkalingam R, Mishra S, Cheethirala S R, Muthupandi V and Sivaprasad K, Metall Mater Trans A48a (2017) 3630.CrossRefGoogle Scholar
  29. 29.
    Praveen K V U, Sastry G V S, and Singh V, Metall Mater Trans A39 (2007) 65.CrossRefGoogle Scholar
  30. 30.
    Gero R, Borukhin L, and Pikus I, Mater Sci Eng A-Struct302 (2001).Google Scholar
  31. 31.
    Kumari A, Sankaranarayana M, and Nandy T K, Int J Refract Metal Hard Mater67 (2017) 18.CrossRefGoogle Scholar
  32. 32.
    Li M Y, Ruprecht D, Kracker G, Hoschen T, and Neu R, J Nucl Mater512 (2018) 1.CrossRefGoogle Scholar
  33. 33.
    Das J, Appa Rao G, Pabi S K, Sankaranarayana M, and Sarma B, Mater Sci Eng A528 (2011) 6235.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Heavy Alloy Penetrator Project (HAPP), Ordinance Factory BoardTiruchirappalliIndia
  2. 2.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of TechnologyTiruchirappalliIndia
  3. 3.DGQA, Ordinance FactoryTiruchirappalliIndia

Personalised recommendations