Microstructure, Thermal, Thermo-mechanical and Fracture Analyses of Hybrid AA2024-SiC Alloy Composites

  • Sourabh Bhaskar
  • Mukesh KumarEmail author
  • Amar Patnaik
Technical Paper


This research work aims to investigate the inter-correlation between microstructure, thermal (thermal conductivity, thermo-gravimetric analysis), thermo-mechanical (dynamic mechanical analysis) and fracture characteristics of hybrid AA2024-SiC alloy composites fabricated via semi-automatic stir-casting process, as per standard industrial practice. Silicon Carbide (SiC) particulates of varying amount (0–6 wt%; @ step of 2%) were used to reinforce master batch of AA2024 wrought alloy, Silicon Nitride (Si3N4) and graphite particulates. The thermal conductivity and storage-modulus magnitudes of alloy composites have shown diminishing trend with hard SiC reinforcing phase, while material stability, viscous modulus, damping factor and fracture toughness have shown significant improvement. Uniform dispersion and better interfacial adhesion between matrix–reinforcement were observed from metallographic examination. The XRD analysis identified the different phases of the hybrid alloy composites. The trends in variations of physical, mechanical and tribological properties were supported by microstructure analysis, thermal analysis, thermo-mechanical analysis and fracture analysis.


AA2024 alloy composites Thermo-Gravimetric Analysis (TGA) Thermal conductivity Dynamic Mechanical Analysis (DMA) Fracture analysis X-ray diffraction (XRD) Microstructure 



The authors express their sincere gratitude to Department of Mechanical Engineering of Malaviya National Institute of Technology, Jaipur-302017, Rajasthan, India, for their financial as well as other miscellaneous infrastructural support. The authors also acknowledge the aid and facilities provided by Advanced Research Lab for Tribology and Material Research Centre of the Institute for experimentation and characterization work.


  1. 1.
    Bhaskar S, Kumar M, Patnaik A, Silicon (2019) Scholar
  2. 2.
    Jinfeng L, Longtao J, Gaohui W, Shoufu T, and Guoqin C, Rare Met. Mater. Eng. 38 (2009) 1894.CrossRefGoogle Scholar
  3. 3.
    Xiu Z Y, Chen G Q, Liu Y M, Yang W S, and Wu G H, Trans. Nonferrous Met. Soc. China 19 (2009) 373.CrossRefGoogle Scholar
  4. 4.
    Bahrami M, Helmi N, Dehghani K, and Givi M K B, Mater. Sci. Eng. A 595 (2014) 173.CrossRefGoogle Scholar
  5. 5.
    Mondal D P, Das S, Suresh K S, and Ramakrishnan N, Mater. Sci. Eng. A 460 (2007) 550.CrossRefGoogle Scholar
  6. 6.
    Ravindran P, Manisekar K, Rathika P, and Narayanasamy P, Mater. Des. 45 (2013) 561.CrossRefGoogle Scholar
  7. 7.
    Hu J, Wu G, Zhang Q, and Gou H, Compos. Part B Eng. 66 (2014) 400.CrossRefGoogle Scholar
  8. 8.
    So K P, Jeong J C, Park J G, Park H K, Choi Y H, Noh D H, Keum D H, Jeong H Y, Biswas C, Hong C H, and Lee Y H, Compos. Sci. Technol. 74 (2013) 6.CrossRefGoogle Scholar
  9. 9.
    Siva Prasad D and Shoba C, J. Mater. Res. Technol. 5 (2016) 123.CrossRefGoogle Scholar
  10. 10.
    Carvalho O, Miranda G, Buciumeanu M, Gasik M, Silva F S, and Madeira S, Compos. Struct. 141 (2016) 155.CrossRefGoogle Scholar
  11. 11.
    Madeira S, Carvalho O, Carneiro V H, Soares D, Silva F S, and Miranda G, Compos. Part B Eng. 90 (2016) 399.CrossRefGoogle Scholar
  12. 12.
    Lu T W, Chen W P, Wang P, Mao M D, Liu Y X, and Fu Z Q, J. Alloys Compd. 735 (2018) 1137.CrossRefGoogle Scholar
  13. 13.
    Rojas J I, Venkata Siva B, Sahoo K L, and Crespo D, J. Alloys Compd. 744 (2018) 445.CrossRefGoogle Scholar
  14. 14.
    Mamatha T G, Patnaik A, Biswas S, Satapathy B K, and Redhewall A K, Comput. Mater. Sci. 55 (2012) 100.CrossRefGoogle Scholar
  15. 15.
    Vencl A, Bobic I, Arostegui S, Bobic B, Marinković A and Babić M, J. Alloys Compd. 506 (2010) 631.CrossRefGoogle Scholar
  16. 16.
    S A Mohan Krishna, Ijmer 4 (2014) 53.Google Scholar
  17. 17.
    Földvári M, Handbook of thermogravimetric system of minerals and its use in geological practice, Occasional Papers of the Geological Institute of Hungary 213 (2011).Google Scholar
  18. 18.
    Chu H P, Parker B H, Flom Y, Fracture Toughness of SiC/Al Metal Matrix Composite, NASA Technical Memorandum 100745 (1989).Google Scholar
  19. 19.
    Mamatha T G, Thermo-mechanical, fracture and erosive wear analysis of particulate filled hybrid metal alloy composites, Ph D Thesis, National Institute of Technology, Hamirpur (2012).Google Scholar
  20. 20.
    Goswami C, Bhat I K, Bathula S, Singh T, and Patnaik A, Silicon 11 (2019) 39.CrossRefGoogle Scholar
  21. 21.
    Muralidharan N, Chockalingam K, Dinaharan I and Kalaiselvan K, J. Alloys Compd. 735 (2018) 2167.CrossRefGoogle Scholar
  22. 22.
    Lee H S and Hong S H, Mater. Sci. Technol. 19 (2003) 1057.CrossRefGoogle Scholar
  23. 23.
    Kawai C, J. Am. Ceram. Soc. 84 (2001) 896.CrossRefGoogle Scholar
  24. 24.
    Ejiofor J U, Okorie B A, and Reddy R G, JMEPEG 6 (1997) 326.CrossRefGoogle Scholar
  25. 25.
    Sastry S, Krishna M and Uchil J, Proc. Second Int. Conf. Process. Mater. Prop. 314 (2000) 268.Google Scholar
  26. 26.
    Menard K P, Dynamic Mechanical Analysis: A Practical Introduction ISBN 0-8493-8688-8 CRC Press LLC, United States of America (1999).Google Scholar
  27. 27.
    Elomari S, Boukhili R, Skibo M D, Masounave J, J Mater Sci 30 (1995) 3037.CrossRefGoogle Scholar
  28. 28.
    Milan M T, Bowen P, JMEPEG 13 (1992) 775.CrossRefGoogle Scholar
  29. 29.
    Davidson D L, Composites 24 (1993) 248.CrossRefGoogle Scholar
  30. 30.
    Ravindran P, Manisekar K, Narayanasamy P, Selvakumar N and Narayanasamy R, Mater. Des. 39 (2012) 42.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentMalaviya National Institute of TechnologyJaipurIndia

Personalised recommendations