Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 12, pp 3201–3214 | Cite as

Effects of Process Parameters on Temperature and Stress Distributions During Selective Laser Melting of Ti–6Al–4V

  • Hua Li
  • Maziar RamezaniEmail author
  • Zhan Chen
  • Sarat Singamneni
Technical Paper
  • 113 Downloads

Abstract

Complex thermal histories in samples made by selective laser melting (SLM) lead to residual stress development, affecting the quality of the final product. SLM process parameters influence the melt temperature and the geometrical features of the molten pool. To investigate the effects of laser power and scan speed on transient temperature and residual stress evolutions and distributions during SLM process, a 3D finite element model has been established. Simulation results have shown that either increasing the laser power or reducing the scan speed causes a higher level of residual stress at the end of a scan track. To validate the simulation results, Ti–6Al–4V samples were made by SLM with varying process parameters and the sizes of melt pools on the top layer as well as the interlayer cracks and lack of fusions defects observed in the samples correlated well with the results from the finite element simulations.

Keywords

Finite element simulation Residual stress Selective laser melting Temperature gradient Ti–6Al–4V 

Notes

References

  1. 1.
    Hopkinson N, Hague R, and Dickens P, Rapid Manufacturing: An Industrial Revolution for the Digital Age, Wiley, London (2005).CrossRefGoogle Scholar
  2. 2.
    Dai D, and Gu D, Mater Design55 (2014) 482.CrossRefGoogle Scholar
  3. 3.
    Roberts I A, Wang C J, Esterlein R, Stanford M, and Mynors D J, Int J Mach Tools Manuf49 (2009) 916.CrossRefGoogle Scholar
  4. 4.
    Li H, Ramezani M, Li M, Ma C, and Wang J, Manuf Lett16 (2018) 36.CrossRefGoogle Scholar
  5. 5.
    Baumers M, Tuck C, Wildman R, Ashcroft I, and Hague R, J Ind Ecol21 (2017) S157.Google Scholar
  6. 6.
    Gu D D, Meiners W, Wissenbach K, and Poprawe R, Int Mater Rev57 (2012) 133.CrossRefGoogle Scholar
  7. 7.
    Prashanth K G, Scudino S, Klauss H J, Surreddi K B, Löber L, Wang Z, Chaubey A K, Kühn U and Eckert J, Mater Sci Eng A590 (2014) 153.CrossRefGoogle Scholar
  8. 8.
    Thijs L, Kempen K, Kruth J P, and Van Humbeeck J, Acta Mater61 (2013) 1809.CrossRefGoogle Scholar
  9. 9.
    Hussein A, Hao L, Yan C, and Everson R, Mater Design (19802015)52 (2013) 638.CrossRefGoogle Scholar
  10. 10.
    Ren J, Liu J, and Yin J, in International Conference on Computer and Computing Technologies in Agriculture, Springer, Berlin (2010), p. 494.Google Scholar
  11. 11.
    Gu D, and He B, Comput Mater Sci117 (2016) 221.CrossRefGoogle Scholar
  12. 12.
    Foroozmehr A, Badrossamay M, and Foroozmehr E, Mater Design89 (2016) 255.CrossRefGoogle Scholar
  13. 13.
    Liebisch A, and Merkel M, Materialwissenschaft und Werkstofftechnik47 (2016) 521.CrossRefGoogle Scholar
  14. 14.
    Ding X, and Wang L, J Manuf Process26 (2017) 280.CrossRefGoogle Scholar
  15. 15.
    Dai D, Gu D, Zhang H, Xiong J, Ma C, Hong C, and Poprawe R, Opt Laser Technol99 (2018) 91.CrossRefGoogle Scholar
  16. 16.
    Tian Y S, Chen C Z, Li S T, and Huo Q H, Appl Surf Sci242 (2005) 177184.CrossRefGoogle Scholar
  17. 17.
    Balazic M, Kopac J, Jackson M J, and Ahmed W, Int J Nano Biomater1 (2007) 3.CrossRefGoogle Scholar
  18. 18.
    Gil F J, Ginebra M P, Manero J M, and Planell J A, J Alloys Compd329 (2001) 142.CrossRefGoogle Scholar
  19. 19.
    Fu C H, and Guo Y B, in Solid Freeform Fabrication Symposium 2014 Proceedings (2014), p. 1129.Google Scholar
  20. 20.
    Parry L, Ashcroft I A, and Wildman R D, Addit Manuf12 (2016) 1.CrossRefGoogle Scholar
  21. 21.
    Li Y, and Gu D, Mater Design63 (2014) 856.CrossRefGoogle Scholar
  22. 22.
    Huang Y, Yang L J, Du X Z, and Yang Y P, Int J Therm Sci104 (2016) 146.CrossRefGoogle Scholar
  23. 23.
    Mercelis P, and Kruth J P, Rapid Prototyp J12 (2006) 254.CrossRefGoogle Scholar
  24. 24.
    Simson T, Emmel A, Dwars A, and Böhm J, Addit Manuf17 (2017) 183.CrossRefGoogle Scholar
  25. 25.
    Liu Y, Yang Y, and Wang D, Int J Adv Manuf Technol87 (2016) 647.CrossRefGoogle Scholar
  26. 26.
    Yadroitsava I, and Yadroitsev I, in Proceedings of the SFF Symposium, Austin, TX, USA (2015), p. 10.Google Scholar
  27. 27.
    Tong J, Bowen C R, Persson J, and Plummer A, Mater Sci Technol33 (2017) 138.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations