Advertisement

Fatigue Crack Growth Study in P91 and 316LN Steels Using Acoustic Emission

  • M. Nani Babu
  • C. K. MukhopadhyayEmail author
  • G. Sasikala
Technical Paper

Abstract

Fatigue crack growth (FCG) behavior of ferritic steel P91 and austenitic stainless steel 316LN (SS 316LN) has been studied at ambient temperature. Acoustic emission (AE) signals generated during FCG tests were captured using 375 kHz resonant transducer. The FCG and AE results were compared for both steels in Paris and threshold regimes. The AE results indicated five and four substages of FCG for P91 steel and SS 316LN, respectively. Several parameters of AE signals such as rise time, peak amplitude and event duration were used to differentiate between various substages of the FCG. AE cumulative count was correlated with stress intensity factor range (ΔK) in Paris regime for both the steels. For SS 316LN, the exponent of the correlation of AE cumulative count with ΔK is in good agreement with Paris exponent. For P91 steel, higher value of the exponent of the AE cumulative count—stress intensity factor range correlation compared to Paris exponent is observed. Monitoring of AE continuously during fatigue crack growth of these two steels enables understanding the mechanisms of crack growth operative at different regions of the FCG curve.

Keywords

Fatigue crack growth Acoustic emission P91 steel 316LN stainless steel Different substages 

Notes

Acknowledgements

Authors are thankful to Dr. A.K. Bhaduri, Director, Indira Gandhi Centre for Atomic Research (IGCAR) and Dr. G. Amarendra, Director, Metallurgy and Materials Group (MMG), IGCAR for support. Authors are also thankful to Dr. Shaju K. Albert, Associate Director, Materials Engineering Group, MMG, IGCAR for support.

References

  1. 1.
    Paris P C, and Erodogan F, ASME J Basic Eng 85 (1963) 528.CrossRefGoogle Scholar
  2. 2.
    Suresh S, and Ritchie R O, Int Met Rev 19 (1984) 445.Google Scholar
  3. 3.
    Ritchie R O, Gilbert C J, and McNaney J M, Int J Solids Struct 37 (2000) 311.CrossRefGoogle Scholar
  4. 4.
    Suresh S, Fatigue of Materials, Cambridge University Press, Cambridge, (1991).Google Scholar
  5. 5.
    Schijve J, Fatigue of Structures and Materials, Springer science, Dordrecht (2009).CrossRefGoogle Scholar
  6. 6.
    Talebzadeh M, and Roberts T M, Key Eng Maters 204–205 (2001) 341.CrossRefGoogle Scholar
  7. 7.
    Roberts T M, and Talebzadeh M, J Constr Steel Res 59 (2003) 695.CrossRefGoogle Scholar
  8. 8.
    Chaswal V, Sasikala G, Ray S K, Mannan S L, and Raj B, Mater Sci Eng A 395 (2005) 251.CrossRefGoogle Scholar
  9. 9.
    Moorthy V, Jayakumar T, and Raj B, Mater Sci Eng A 212 (1996) 273.CrossRefGoogle Scholar
  10. 10.
    Chai M Y, Zhang J, Zhang Z X, Duan Q, and Cheng G X, Appl Acoust 126 (2017) 101.CrossRefGoogle Scholar
  11. 11.
    Chai M, Zhang Z, and Duan Q S Y, Int J Fatigue 109 (2018) 145.CrossRefGoogle Scholar
  12. 12.
    Johan Singh P, Mukhopadhyay C K, Jayakumar T, Mannan S L, and Raj B, Int J Fatigue 29 (2007) 2170.CrossRefGoogle Scholar
  13. 13.
    Han Z, Luo H, Zhang Y, and Cao J, Mater Sci Eng A 559 (2013) 534.CrossRefGoogle Scholar
  14. 14.
    Cao J, Luo H, and Han Z, Proc Eng 27 (2012) 1524.CrossRefGoogle Scholar
  15. 15.
    Ennaceur C, Laksimi A, Hreve C, and Cherfaoui M, Int J Press Vessels Pip 83 (2006) 197.CrossRefGoogle Scholar
  16. 16.
    Gagar D, Foote P, and Irving P, Smart Mater Struct 23 (2014) 1.CrossRefGoogle Scholar
  17. 17.
    Aggelis D G, Kordatos E Z, and Matikas T E, Mech Res Commun 38 (2011) 106.CrossRefGoogle Scholar
  18. 18.
    Harris D O, and Dunegan H L, Exp Mech 14 (1974) 71.CrossRefGoogle Scholar
  19. 19.
    Land D D, and Lankford J, ASTM STP 811 (1983), p. 371.Google Scholar
  20. 20.
    Ohira T, Kishi T, and Horiuchi R, in The Fifth Int. Acoustic Emission Symposium, Tokyo, Japan (1980), p. 137.Google Scholar
  21. 21.
    Gong Z, Nyborg E O, and Oommen G, Mater Eval 50 (1992) 883.Google Scholar
  22. 22.
    Bassim M N, Lawrence S S T, and Liu C D, Eng Fract Mech 47 (1994) 207.CrossRefGoogle Scholar
  23. 23.
    Zain M S M, Jamaludin N, Sajuri Z, Yusof M F M, and Hanafi Z H, National Conf. in Mechanical Engineering Research and Postgraduate Studies (2nd NCMER), 3–4 Dec 2010, Pahang, Malaysia (2010), p. 82.Google Scholar
  24. 24.
    Daniel I M, LuoJ-J, Sifniotopoulos C G, Chun H-J, and McCormick R R, in Review of Progress in Quantitative Nondestructive Evaluation (Eds) Thompson D O, EChimenti D, Plenum Press, New York (1997), p. 451.Google Scholar
  25. 25.
    Sinclair A C, Connors D C, and Formby C L, Mater Sci Eng 28 (1977) 263.CrossRefGoogle Scholar
  26. 26.
    Standard Test Method for Measurement of Fatigue Crack Growth Rates, E647-08e1, Annual Book of ASTM Standards, ASTM, PA, USA, 2010.Google Scholar
  27. 27.
    Yu J G, Ziehl P, Zrate B, and Caicedo J, J Constructional Steel Res 67 (2011) 1254.CrossRefGoogle Scholar
  28. 28.
    Lindley T C, Palmer I G, and Richards C E, Mater Sci Eng 32 (1978) 1.CrossRefGoogle Scholar
  29. 29.
    Louat N, Sadananda K, Duesbery M, and Vasudevan A K, Metall Trans A24 (1993) 2225.CrossRefGoogle Scholar
  30. 30.
    Oh K H, Jung C K, Yang Y C, and Han K S, Key Eng Mater 261–263 (2004) 1325.CrossRefGoogle Scholar
  31. 31.
    Kim Y H, Nam H W, Jung S W, and Han K S, in Proc. of the International Conference on Structural Integrity and Fracture, (Eds) Dyskin A V, Hu X, and Sahouryeh E, Perth, Australia, Sept. 25–27 (2002), p. 271.Google Scholar
  32. 32.
    Kumar J, Ahmad S, Mukhopadhyay C K, Jayakumar T, and Kumar V, Nondestruct Test Evaluation (Taylor and Francis journal) 31(2016) 77.CrossRefGoogle Scholar
  33. 33.
    Nani Babu M, Mukhopadhyay C K, Sasikala G, Albert Shaju K, Bhaduri A K, Jayakumar T, and Kuamr R, J Constructional Steel Res 126 (2016) 107.CrossRefGoogle Scholar
  34. 34.
    Mukhopadhyay C K, Kasiviswanathan K V, Jayakumar T, and Raj B, J Maters Sci 28 (1993) 145.CrossRefGoogle Scholar
  35. 35.
    Maeng W-Y, and Kim M-H, J Nucl Mater 282 (2000) 32.CrossRefGoogle Scholar
  36. 36.
    Barsoum F F, Suleman J, Korcak A, and Hill E V K, J Acoust Emiss 27 (2009) 40.Google Scholar
  37. 37.
    James M N, Eng Fract Mech 77 (2010) 1998.CrossRefGoogle Scholar
  38. 38.
    Daniel S Jr, Heiple R, and Carpenter S, J Acoust Emiss 7 (1988) 9.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • M. Nani Babu
    • 1
  • C. K. Mukhopadhyay
    • 1
    Email author
  • G. Sasikala
    • 1
  1. 1.HBNI, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations