Optimization of Electrochemical Micromachining Process Parameters for Machining of AMCs with Different % Compositions of GGBS Using Taguchi and TOPSIS Methods

  • S. ManirajEmail author
  • R. Thanigaivelan
Technical Paper


In recent years, the application of aluminum metal matrix composites is expanding to various fields like aerospace, automobile and other industrial machineries. This paper presents the machinability of ground-granulated blast furnace slag (GGBS)-reinforced aluminum 6061 metal matrix composites using electrochemical micromachining for material removal rate (MRR) and radial overcut (ROC). Input voltage, duty cycle, electrolyte concentration and % of composition are selected as the input process parameters. Experiments have been investigated using the L18 mixed-level orthogonal array, and process parameters are optimized using Taguchi technique. The model equation for MRR and ROC is developed using regression analysis. Analysis of variance is performed, and the most significant factor is found to be percentage (%) composition of GGBS. Additionally, the multi-criteria decision-making technique has been used to find optimal machining parameters for higher MRR and lower ROC. The optimal combination for higher MRR and lower ROC is 10 V, 50%, 35 g/l and 12% of GGBS composition. The confirmation test has been carried out to validate the results, and the obtained optimal parameter levels are very close to an ideal solution.


Electrochemical micromachining (EMM) Material removal rate Radial overcut Aluminum composites TOPSIS 



  1. 1.
    Miracle D B, Compos Sci Technol 65 (2005) 2526.CrossRefGoogle Scholar
  2. 2.
    Ellis M B D, Int Mater Rev 41 (1996) 41.CrossRefGoogle Scholar
  3. 3.
    Jain V K, Introduction to Micromachining, Narosa Publishing House, New Delhi (2010).Google Scholar
  4. 4.
    Bhattacharyya B, and Munda J, J Mater Process Technol 140 (2003) 287.CrossRefGoogle Scholar
  5. 5.
    Senthilkumar C, Ganesan G, and Karthikeyan R, Int J Adv Manuf Technol 43 (2009) 256.CrossRefGoogle Scholar
  6. 6.
    Noorul Haq A, Marimuthu P, and Jeyapaul R, Int J Adv Manuf Technol 37 (2008) 250.CrossRefGoogle Scholar
  7. 7.
    Venkatesh C, Arun N M, and Venkatesan R, Procedia Eng 97 (2014) 975.CrossRefGoogle Scholar
  8. 8.
    Hackert-Oschätzchen M, Lehnert N, Martin A, and Schubert A, IOP Conf Ser Mater Sci Eng 118 (2016) 012.CrossRefGoogle Scholar
  9. 9.
    Kalra C S, Kumar V, and Manna A, Proc Inst Mech Eng Part L J Mater Des Appl 232 (2015) 67.Google Scholar
  10. 10.
    Rao S R, and Padmanabhan G, Int J Appl Sci Eng 12 (2014) 87.Google Scholar
  11. 11.
    Rao S R, and Padmanabhan G, J Manuf Sci Prod 13 (2013) 31.Google Scholar
  12. 12.
    Munda J, Malapati M, and Bhattacharyya B, Int J Manuf Technol and Manage 21 (2010) 54.CrossRefGoogle Scholar
  13. 13.
    Thanigaivelan R, and Arunachalam R, J Sci Ind Res 72 (2013) 36.Google Scholar
  14. 14.
    Turgay Kıvak, Measurement 50 (2014) 19.CrossRefGoogle Scholar
  15. 15.
    Tiwary A P, Pradhan B B, and Bhattacharyya B, Adv Manuf 02 (2014) 251.CrossRefGoogle Scholar
  16. 16.
    Ramesh S, Viswanathan R, and Ambika S, Measurement 78 (2016) 63.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Mechanical EngineeringPaavai Engineering College (Autonomous)Namakkal (Dt)India
  2. 2.Mechanical EngineeringMuthayammal Engineering College (Autonomous)Namakkal (Dt)India

Personalised recommendations