Advertisement

Ultrasonicated Direct Chill Clad Casting of Magnesium Alloy: A Computational Approach

  • Kunal Chopra
  • A. K. Prasada RaoEmail author
Technical Paper
  • 12 Downloads

Abstract

The current work introduces a new process ultrasonicated direct chill clad casting (UDCC) and discusses a computational fluid dynamics model of combined solidification of AZ31 alloy billet with A356 alloy as cladding, using ANSYS. The geometry, boundary conditions and casting parameters considered in the present work are of industrial scale. Computations were performed at various casting speeds to understand the profiles of the temperature, clad interface and solid fraction. The solidification phenomena of direct chill clad casting process (DCC) and UDCC were critically discussed herein.

Keywords

Direct chill casting Cladding Magnesium alloy Solidification Simulation 

Notes

References

  1. 1.
    Eskin D G, Physical Metallurgy of Direct Chill Casting of Aluminum Alloys, CRC Press, Boca Raton, FL, 2008, p. 1CrossRefGoogle Scholar
  2. 2.
    Miller W S, Zhuang L, Bottema J, Wittebrood A J, Smet P D, Haszler A and Vieregge A, Mater Sci Eng A 280 (2000) 37CrossRefGoogle Scholar
  3. 3.
    Papis K J M, Hallstedt B, Loffler J F and Uggowiter P J, Acta Mater 56 (2008) 3036CrossRefGoogle Scholar
  4. 4.
    Kim I K and Hong S I, Mater Des 49 (2013) 935CrossRefGoogle Scholar
  5. 5.
    Liu T, Wang Q D, Sui Y D, Wang Q G and Ding W J, Mater Des 68 (2015) 8CrossRefGoogle Scholar
  6. 6.
    Wagstaff R B, Lloyd D J and Bischoff T F, Mater Sci Forum, 519-521 (2006) p 1809CrossRefGoogle Scholar
  7. 7.
    Bae J H, Prasada Rao A K, Kim K H and Kim N J, Scripta Mater 64 (2011) 836CrossRefGoogle Scholar
  8. 8.
    Xing H, Haitao Z, Bo S, Kesheng Z, Lizi H, Ke Q and Jianzhong C, Mater Trans 56 (2015) 1893CrossRefGoogle Scholar
  9. 9.
    Marukovich E I, Branovitsky A M, Na Y S, Lee J H and Choi K Y, Materials & Design 27 (2006) 1016CrossRefGoogle Scholar
  10. 10.
    Pardeshi R, J Manf Proc 21 (2016) 23CrossRefGoogle Scholar
  11. 11.
    Jiang H, Zhang H, Qin K and Cui J, Trans Nonferrous Met Soc of China 21 (2011) 1692CrossRefGoogle Scholar
  12. 12.
    Fu Y, Jie J, Wu L, Park J, Sun J, Kim J and Li T, Mater Sci Eng A 561 (2013) 239CrossRefGoogle Scholar
  13. 13.
    Schmid V G and Ehret L, Zeitschrift Elektrochemie 43 (1937) 869Google Scholar
  14. 14.
    Schmid V G and Roll A, Zeitschrift Elektrochemie 45 (1939) 769Google Scholar
  15. 15.
    Schmid V G and Roll A, Zeitschrift Elektrochemie 46 (1940) 653Google Scholar
  16. 16.
    Eskin D G, J Mater Sci and Tech 33 (2017) 636CrossRefGoogle Scholar
  17. 17.
    Valencia J J and Quested P N, Thermophysical Properties. ASM Handbook, 15: Casting, p 468-481( https://doi.org/10.1361/asmhba0005240)
  18. 18.
    Hu W, Le Q, Zhang Z, Bao L and Cui J, J Magnesium and Alloys, 1, (2013) 88CrossRefGoogle Scholar
  19. 19.
    Bennon W D and Incropera F P, Int. J. Heat Mass Transf., 30 (1987) 2161CrossRefGoogle Scholar
  20. 20.
    Baserinia A R, Ng H, Weckman D C, Wells M A, Barker S and Gallerneault M, Metal and Mater Trans B 43 (2012) 887CrossRefGoogle Scholar
  21. 21.
    Gardarsson G, Gudmundsson T, Jonsson M T and Palsson H, The Minerals, Metals and Mater Series, Light metals (2017) p 955–966Google Scholar
  22. 22.
    Wells M A, i D and Cockcroft S L, Metall and Mater Trans B 32 (2012) 929CrossRefGoogle Scholar
  23. 23.
    Walinjkar D and Prasada Rao A K, Mater Lett 161 (2015) 698CrossRefGoogle Scholar
  24. 24.
    Prasada Rao A K, Mater and Manf Proc 29 (2015) 848CrossRefGoogle Scholar
  25. 25.
    Nagasivamuni B and Ravi K R, Trans Ind Inst Metals 68 (2015) 1161CrossRefGoogle Scholar
  26. 26.
    Lebon G S B, Salloum-Abou-Jaoude G, Eskin D, Tzanakis I, Pericleous K, and Jarry P, Ultrasonics Sonochemistry 54 (2019) (171)CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, SoETBML Munjal UniversityGurgaonIndia

Personalised recommendations