Advertisement

Microstructural and Tribological Analysis of Boronizing Methods on SAE 52100

  • S. Ilaiyavel
  • S. C. AtulEmail author
  • S. P. Chandra Sekar
Technical Paper

Abstract

SAE 52100 high-carbon, chromium-containing low-alloy steel typically finds applications in bearings and rotary machine components. In this study, pack, paste and molten salt bath boronizing techniques were compared at constant 5 h soaking period. The boronizing process on SAE 52100 was studied by characterizing the microstructure through an optical microscope and SEM imaging. Surface hardness, diffusion depth and boronized phases were observed on the boronized samples. Dry sand abrasion tester based on ASTM G65 was used to analyse the abrasive wear resistance of the steel samples under ambient condition. The process of boronizing had produced a hard, wear-resistant case with an average hardness of 1400 HV. A relatively uniform case thickness was achieved in salt bath boronizing method, while the slurry paste boronizing method produced the largest diffusion layer thickness.

Keywords

Diffusion depth Bearing steel Surface hardness Dry sand abrasion Boronizing Microstructure 

Notes

References

  1. 1.
  2. 2.
    Bindal C, and Üçisik A H, Surf Coat Technol 122 (1999) 208.  https://doi.org/10.1016/s0257-8972(99)00294-7.CrossRefGoogle Scholar
  3. 3.
    Wang B, Jin X, Xue W, Wu Z, Du J, and Wu J, Surf Coat Technol 232 (2013) 142.  https://doi.org/10.1016/j.surfcoat.2013.04.064.CrossRefGoogle Scholar
  4. 4.
    Atul S C, Adalarasan R, and Santhanakumar M, Int J Manuf Mater Mech Eng 5 (2015) 64.  https://doi.org/10.4018/ijmmme.2015070104.Google Scholar
  5. 5.
    Atul S C, Adalarasan R, Santhanakumar M, and Sekar S P C, J Appl Eng Res 10 (2015) 25976.Google Scholar
  6. 6.
    Kusmanov S A, Tambovskii I V, Naumov A R, D’yakov I G, Kusmanova I A, and Belkin P N, Prot Met Phys Chem Surf 53 (2017) 488.  https://doi.org/10.1134/s2070205117030121.CrossRefGoogle Scholar
  7. 7.
    Wang H, Zhao Y, Yuan X, Chen K, and Xu R, Phys Proc 50 (2013) 124.  https://doi.org/10.1016/j.phpro.2013.11.021.CrossRefGoogle Scholar
  8. 8.
    Ozbek I, Bindal C, Surf Coat Technol 154 (2002) 14.  https://doi.org/10.1016/s0257-8972(01)01409-8.CrossRefGoogle Scholar
  9. 9.
    Kartal G, Timur S, Sista V, Eryilmaz O L, and Erdemir A, Surf Coat Technol 206 (2011) 2005.  https://doi.org/10.1016/j.surfcoat.2011.08.049.CrossRefGoogle Scholar
  10. 10.
    Jain V, and Sundararajan G, Surf Coat Technol 149 (2002) 21.  https://doi.org/10.1016/s0257-8972(01)01385-8.CrossRefGoogle Scholar
  11. 11.
    Gunes I, El-Cezerî J Sci Eng 2015 (2015) 53.Google Scholar
  12. 12.
    Merve Y, Yavuz K, Volkan O, and Arzum I, Int Conf Eng Technol Appl Sci 1 (2016) 602.Google Scholar
  13. 13.
    Pengxun Y, Thin Solid Films 214 (1992) 44.  https://doi.org/10.1016/0040-6090(92)90453-i.CrossRefGoogle Scholar
  14. 14.
    Kartal G, Eryilmaz O L, Krumdick G, Erdemir A, and Timur S, Appl Surf Sci 257 (2011) 6928.  https://doi.org/10.1016/j.apsusc.2011.03.034.CrossRefGoogle Scholar
  15. 15.
    Gunes I, Ulker S, and Taktak S, Mater Des 32 (2011) 2380.  https://doi.org/10.1016/j.matdes.2010.11.031.CrossRefGoogle Scholar
  16. 16.
    Venkataraman B, Surf Coat Technol 73 (1995) 177.  https://doi.org/10.1016/0257-8972(94)02379-4.CrossRefGoogle Scholar
  17. 17.
    Kartal G, Timur S, Eryilmaz O L, and Erdemir A, Surf Coat Technol 205 (2010) 1578.  https://doi.org/10.1016/j.surfcoat.2010.08.050.CrossRefGoogle Scholar
  18. 18.
    Arzum I, Emre A, Yavuz K, and Volkan O, Wear Behavior of Boronized AISI D2 TOOL, Int. Mater. Symp. (2016) 353.Google Scholar
  19. 19.
    Ulukoy A, Can A, Ozmen Y, and Tasgetiren S, Proc Inst Mech Eng Part L J Mater Des Appl 229 (2015) 226.  https://doi.org/10.1177/1464420713509560.Google Scholar
  20. 20.
    Arzum I, Yavuz K, Volkan O, and Ahmet Ç C, The Microstructure and Hardness Analysis of Decarburization Followed by Boronizing AISI D3 Tool Steel, Int. Conf. Eng. Nat. Sci. (2015) 438.Google Scholar
  21. 21.
    Küper A, Qiao X, Stock H R, and Mayr P, Surf Coat Technol 130 (2000) 87.  https://doi.org/10.1016/s0257-8972(00)00682-4.CrossRefGoogle Scholar
  22. 22.
    Kulka M, and Pertek A, Appl Surf Sci 214 (2003) 161.  https://doi.org/10.1016/s0169-4332(03)00303-9.CrossRefGoogle Scholar
  23. 23.
    Gunes I, Cicek A, Aslantas K, and Kara F, Trans Indian Inst Met 67 (2014) 909.  https://doi.org/10.1007/s12666-014-0417-4.CrossRefGoogle Scholar
  24. 24.
    Xie J, Alpas A T, and Northwood D O, Mater Sci Eng A 393 (2005) 42.  https://doi.org/10.1016/j.msea.2004.09.045.CrossRefGoogle Scholar
  25. 25.
    Rile M, Met Sci Heat Treat 16 (1974) 836.  https://doi.org/10.1007/bf00664246.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Sri Venkateswara College of EngineeringSriperumbudurIndia
  2. 2.Wear Cote TechnologiesTiruvallurIndia

Personalised recommendations