Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 10, pp 2893–2899 | Cite as

Effect of Hot Extrusion on the Microstructure, Mechanical Properties, and Corrosion Behavior of Mg–11Li–3Al–2Zn–1.5Nd–0.2Zr Alloy

  • Xue Lei
  • Richu Wang
  • Chaoqun Peng
  • Yan Feng
  • Yuehua SunEmail author
Technical Paper
  • 65 Downloads

Abstract

The microstructure, mechanical properties, and corrosion behavior of Mg–11Li–3Al–2Zn–1.5Nd–0.2Zr alloy before and after hot extrusion were studied. The results show that both as-homogenized and as-extruded alloys consist of β-Li, AlLi, MgLi2Al, and NdAl3 phases. The ultimate tensile strength and elongation of as-extruded alloy are 149.86 MPa and 42.33%, respectively, which are higher than those of as-homogenized alloy (132.99 MPa and 19%). The as-extruded alloy shows a better corrosion resistance with a lower hydrogen evolution rate and a higher charge transfer resistance. The improvement of mechanical properties and corrosion resistance of Mg–11Li–3Al–2Zn–1.5Nd–0.2Zr alloy after hot extrusion are as a result of the grain refinement and the uniform distribution of crumbled intermetallic phases.

Keywords

Mg–Li alloy Hot extrusion Grain refinement Microstructure Mechanical properties Corrosion behavior 

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities of Central South University (No. 2017zzts005) and the Open-End Fund for the Valuable and Precision Instruments of Central South University (No. CSUZC201814).

References

  1. 1.
    Cui C L, Zhu T L, Leng Z, Wu R Z, Zhang J H, and Zhang M L, Acta Metall. SIN-ENGL. 48 (2012) 725 (in Chinese).CrossRefGoogle Scholar
  2. 2.
    Li J Q, Qu Z K, Wu R Z, and Zhang M L, Mater Sci Eng A 527 (2010) 2780.CrossRefGoogle Scholar
  3. 3.
    Liu B, Zhang M L, and Wu R Z, Mater Sci Eng A 487 (2008) 347.CrossRefGoogle Scholar
  4. 4.
    Fei P F, Qu Z K, and Wu R Z, Mater Sci Eng A 625 (2015) 169.CrossRefGoogle Scholar
  5. 5.
    Chang T C, Wang J Y, Chu C L, and Lee S, Mater Lett 60 (2010) 3272.CrossRefGoogle Scholar
  6. 6.
    Wu L B, Cui C L, Wu R Z, Li J Q, Zhan H B, and Zhang M L, Mater Sci Eng A 528 (2011) 2174.CrossRefGoogle Scholar
  7. 7.
    Zhang T L, Toko T, Munekazu O, Wu R Z, Zhang M L, and Kiyotaka M, Mater Sci Eng A 737 (2018) 61.CrossRefGoogle Scholar
  8. 8.
    Chen J K, Chen Y C, Li H T, Chan K S, and Chang C J, Trans Nonferrous Met Soc China English Ed 25 (2015) 3223.CrossRefGoogle Scholar
  9. 9.
    Li M, Hao H, Zhang A M, Song Y D, and Zhang X G, J Rare Earth 30 (2012) 492.CrossRefGoogle Scholar
  10. 10.
    Hong X, Zhang X, Zhang K, Shi Y, and Ren J P, J. Rare Earth 34 (2016) 315.CrossRefGoogle Scholar
  11. 11.
    Zeng R C, Sun L, Zheng Y F, Cui H Z, and Han E H, Corros Sci 79 (2014) 69.CrossRefGoogle Scholar
  12. 12.
    Zeng R C, Karl U K, Carsten B, and Wolfgang D, Alloys Compd 509 (2011) 4462.CrossRefGoogle Scholar
  13. 13.
    Zhang T, Meng G Z, Shao Y W, Cui Z Y, and Wang F H, Corros Sci 53 (2011) 1960.CrossRefGoogle Scholar
  14. 14.
    Li C Q, Xu D K, Chen X-B, Wang B J, Wu R Z, Han E H, and Birbilis N, Electrochim Acta, 260 (2017) 55.CrossRefGoogle Scholar
  15. 15.
    Tang Y, Le Q C, Jia W T, Fu L, Liu X, and Cui J Z, Mater Sci Eng A 704 (2017) 344.CrossRefGoogle Scholar
  16. 16.
    Kim Y H, Kim J H, Yu H S, Choi J W, and Son H T, J. Alloys Compd. 583 (2014) 15.CrossRefGoogle Scholar
  17. 17.
    Xu S W, Kamado S, Matsumoto N, Honma T, and Kojima Y, Mater Sci Eng A 527 (2009) 52.CrossRefGoogle Scholar
  18. 18.
    Wu L B, Liu X H, Wu R Z, Cui C L, Zhang J H, and Zhang M L, Trans Nonferrous Met Soc China Engl Ed 22 (2012) 779.CrossRefGoogle Scholar
  19. 19.
    Qu Z K, Wu R Z, Zhan H B, and Zhang M L, J Alloys Compd 536 (2012) 145.CrossRefGoogle Scholar
  20. 20.
    Cao F R, Xia F, Hou H L, Ding H, and Li Z Q, Mater Sci Eng A 637 (2015) 89.CrossRefGoogle Scholar
  21. 21.
    Takayuki H, Yuhta K, Naohiro H, Hitoshi F, and Hirohiko T, Mater Sci Eng A 551 (2012) 209.CrossRefGoogle Scholar
  22. 22.
    Wang Z C and Prangnell P B, Mater Sci Eng A 328 (2002) 87.CrossRefGoogle Scholar
  23. 23.
    Liu J, Cui Z and Ruan L, Mater Sci Eng A 529 (2011) 300.CrossRefGoogle Scholar
  24. 24.
    Fu H M, Qiu D, Zhang M X, Wang H, Kelly P M, and Taylor J A, J Alloys Compd 456 (2008) 390.CrossRefGoogle Scholar
  25. 25.
    Liu Y, Study on the Heat Treatment Process and Cold Rolling Property of Mg-Li-Al-Zr Alloys, Ph.D. Thesis, Yanshan University, China (2016) p 36.Google Scholar
  26. 26.
    Zhao M C, Liu M, Song G L, and Andrej A, Corros Sci 50 (2008) 1939.CrossRefGoogle Scholar
  27. 27.
    Gao L L, Zhang C H, Zhang M L, Huang X M, and Sheng N, J Alloys Compd 22 (2008) 135.Google Scholar
  28. 28.
    Song Y W, Shan D Y, Chen R S, and Han E H, J Alloys Compd 484 (2009) 585.CrossRefGoogle Scholar
  29. 29.
    Zhang T, Meng G Z, Shao Y W, Cui Z Y, and Wang F H, Corros Sci 53 (2011) 2934.CrossRefGoogle Scholar
  30. 30.
    Aung N N and Zhou W, Corros Sci 52 (2010) 589.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Xue Lei
    • 1
  • Richu Wang
    • 1
  • Chaoqun Peng
    • 1
  • Yan Feng
    • 1
  • Yuehua Sun
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations