Transactions of the Indian Institute of Metals

, Volume 72, Issue 10, pp 2819–2826 | Cite as

Effect of Cr Contents on the Porosity Percentage, Microstructure, and Mechanical Properties of Steel Foams Manufactured by Powder Metallurgy

  • Hamid SazegaranEmail author
  • Abolfazl Feizi
  • Milad Hojati
Technical Paper


In this work, the effect of Cr content (0, 1, 2, 3, and 4 wt%) on the porosity percentage, cell walls microstructure, and mechanical behavior of the steel foams containing 0.6 wt% C, 1.5 wt% Cu, and 2 wt% P manufactured by powder metallurgy using leachable space holder technique was investigated. The microstructure of the cell walls was evaluated by optical microscopy (OM) and scanning electron microscopy (SEM). The mechanical behavior of the manufactured foams was studied by compression and hardness tests. The porosity values of the steel foams were between 72 and 76%, and increase in Cr content (from 0 to 4 wt%) did not have significant effect on the porosity. The results revealed that the microstructure of cell walls comprised of copper islands, intergranular carbides, phosphorus phases, and pearlite. The liquid phase sintering (LPS), solution strengthening by Cr, and the formation of intergranular carbides lead to improve the mechanical behavior of steel foams. The elastic region, long sawtooth plateau region, and fracture point are manifestly observed in the compressional stress versus strain curves. By increasing the Cr content, the plateau stress (from 41.7 to 153.2 MPa), the fracture point stress (from 42.3 to 182.4 MPa), and the elasticity modulus (from 1.23 to 3.73 GPa) increase.


Cr content Steel foam Porosity Compressional behavior Sawtooth plateau 



This work research was sponsored by Quchan University of Technology under Contract No. 96/8428. The authors would like to thank the Financial Deputy of Quchan University of Technology.


  1. 1.
    Banhart J, Prog Mater Sci 46 (2001) 559.CrossRefGoogle Scholar
  2. 2.
    Ashby M F, Evans A G, Fleck N A, Gibson L J, Hutchinson J W, and Wadley H N G, Metal Foams: A Design Guide, Butterworth–Heinemann, Boston (2000), p 26.Google Scholar
  3. 3.
    Degischer H P, and Kriszt B, Handbook of Cellular Metals, Production, Processing and Applications, Wiley–VCH/Verlag GmbH, Weinheim (2002) p 65.Google Scholar
  4. 4.
    Srinath G, Vadiraj A, Balachandran G, Sahu S N, and Gokhale A A, Trans Indian Inst Met 63 (2010) 765.CrossRefGoogle Scholar
  5. 5.
    Banhart J, Vinod-Kumar G S, Kamm P H, Neu T R, and Garcia-Moreno F, C T Mat 28 (2016) 1.CrossRefGoogle Scholar
  6. 6.
    Bhattachary A, Calmidi V V, and Mahajan R L, Int J Heat Mass Transf 45 (2002) 1017.CrossRefGoogle Scholar
  7. 7.
    Kim S, and Lee C W, Proc Mater Sci 4 (2014) 305.Google Scholar
  8. 8.
    Banhart J, Production of Metal Foams, Handbook of Comprehensive Composite Materials II, Academic Press, Oxford (2018) p 347.Google Scholar
  9. 9.
    Park C, and Nutt S R, Mater Sci Eng A 297 (2001) 62.CrossRefGoogle Scholar
  10. 10.
    Golabgir M H, Ebrahimi-Kahrizsangi R, Torabi O, Tajizadegan H, and Jamshidi A, Adv Powder Technol 25 (2014) 960.CrossRefGoogle Scholar
  11. 11.
    Park C, and Nutt S R, Mater Sci Eng A 288 (2000) 111.CrossRefGoogle Scholar
  12. 12.
    Smith B H, Szyniszewski S, Hajjar J F, Schafer B W, and Arwade S R, J Constr Steel Res 71 (2012) 1.CrossRefGoogle Scholar
  13. 13.
    Tian D, Pang Y, Yu L, and Sun L, Int J Min Met Mater 23 (2016) 793.CrossRefGoogle Scholar
  14. 14.
    Esen Z, and Bor S, Mater Sci Eng A 528 (2011) 3200.CrossRefGoogle Scholar
  15. 15.
    Xie B, Fan Y Z, Mu T Z, and Deng B, Mater Sci Eng A 708 (2017) 419.CrossRefGoogle Scholar
  16. 16.
    Aida S F, Hijrah M N, Amirah A H, Zuhailawati H, and Anasyida A S, Procedia Chem 19 (2016) 234.CrossRefGoogle Scholar
  17. 17.
    Pang Q, Hu Z, and Wang G, T Nonferr Metal Soc 27 (2017) 1052.CrossRefGoogle Scholar
  18. 18.
    Bansiddhi A, and Dunand D C, Acta Biomater 4 (2008) 1996.CrossRefGoogle Scholar
  19. 19.
    Sharma M, Gupta G K, Modi O P, Prasad B K, and Gupta A K, Mater Lett 65 (2011) 3199.CrossRefGoogle Scholar
  20. 20.
    Bafti H, and Habibolah Zadeh A, Mater Des 31 (2010) 4122.CrossRefGoogle Scholar
  21. 21.
    Shimizu T, Matsuzaki K, Nagai H, and Kanetake N, Mater Sci Eng A 558 (2012) 343.CrossRefGoogle Scholar
  22. 22.
    Bekoz N, and Oktay E, Mater Des 53 (2014) 482.CrossRefGoogle Scholar
  23. 23.
    Bekoz N, and Oktay E, Mater Sci Eng A 576 (2013) 82.CrossRefGoogle Scholar
  24. 24.
    Bekoz N, and Oktay E, J Mater Process Technol 212 (2012) 2109.CrossRefGoogle Scholar
  25. 25.
    Mondal D P, Jain H, Das S, and Jha A K, Mater Des 88 (2015) 430.CrossRefGoogle Scholar
  26. 26.
    Mirzaei M, and Paydar M H, Mater Des 121 (2017) 442.CrossRefGoogle Scholar
  27. 27.
    Mutlu I, and Oktay E, J Mater Sci Technol 29 (2013) 582.CrossRefGoogle Scholar
  28. 28.
    Jiang B, Zhao N, Shi C, and Li J, Scripta Mater 53 (2005) 781.CrossRefGoogle Scholar
  29. 29.
    Simchi A, Mater Lett 62 (2008) 2840.CrossRefGoogle Scholar
  30. 30.
    Wong-Angel W D, Tellez-Jurado L, Chavez-Alcala J F, Chavira-Martinez E, and Verduzco-Cedeno V F, Mater Des 58 (2014) 12.CrossRefGoogle Scholar
  31. 31.
    German R M, Suri P, and Park S J, J Mater Sci 44 (2009) 1.CrossRefGoogle Scholar
  32. 32.
    Wu M W, Cai W Z, Lin Z J, and Chang S H, Mater Des 133 (2017) 536.CrossRefGoogle Scholar
  33. 33.
    Bergman O, Chasoglou D, and Dahlstrom M, Met Powder Rep 73 (2018) 21.CrossRefGoogle Scholar
  34. 34.
    Chauhan S, Verma V, Prakash U, Tewari P C, and Khanduj D, Mater Today-Proc 3 (2016) 2899.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Industrial Engineering Department, Faculty of EngineeringQuchan University of TechnologyQuchanIran
  2. 2.Institute of Chemical Technologies and Analytics, Vienna University of TechnologyViennaAustria

Personalised recommendations