Zirconia: A Unique Multifunctional Ceramic Material

  • Pradyut Sengupta
  • Arjak Bhattacharjee
  • Himadri Sekhar MaitiEmail author
Technical Paper


Zirconia ceramics possess the unique combination of multi-functionality. There have been a number of landmark discoveries in the areas of its mechanical, electrical and thermal properties. The material is known to have a number of polymorphs like monoclinic at room temperature, tetragonal normally above around 1170 °C and cubic above around 2300 °C. The high-temperature cubic phase can be stabilized at room temperature by forming a solid solution with di-, tri- or tetravalent metal oxides. Its fracture toughness can be enhanced significantly by taking advantage of the stress-induced polymorphic transformation. Partially stabilized zirconia is known to have the highest toughness among all the monolithic ceramic materials. The addition of zirconia to other ceramics like alumina also toughens the ceramic composite. Stabilization of zirconia to its cubic form generates very large amount of oxygen ion vacancy, thereby enhancing the oxygen diffusivity and oxygen ion conductivity, which makes this material one of the most important solid-state high-temperature electrolytes suitable for electrochemical devices like solid oxide fuel cell, oxygen sensor and oxygen pump. Low thermal conductivity of the material makes it useful as thermal barrier coating for gas turbine blades in order to increase the operating temperature and therefore the efficiency of the turbines. High mechanical strength and high toughness together with excellent resistant to toxicity have made it emerge as a new material for biomedical prosthesis, particularly dental implants. Reinforcing with carbon nano-tube or graphene oxide enhances the mechanical properties and changes the nature of electrical conduction significantly.


Zirconia Polymorphic transformation Stabilization Transformation toughening Ionic conductivity Solid oxide fuel cell Biomedical implant CNT- and GO-reinforced composite 



The authors acknowledge the support provided by their respective organizations in preparing this manuscript.


  1. 1.
    Choudhary C B, Maiti H S, and Subbarao E C, in Solid Electrolytes and Their Applications, (ed) Subbarao E C, Plenum Press, New York (1980), p 1.Google Scholar
  2. 2.
    Subbarao E C, and Maiti H S, Solid State Ion 11 (1984) 317.CrossRefGoogle Scholar
  3. 3.
    Subbarao E C, Maiti H S, and Srivastava K K, Phys Stat Solidi 21(1974) 9.CrossRefGoogle Scholar
  4. 4.
    Garvie R, Hannink R H, and Pascoe R T, Nature 258 (1975) 703.CrossRefGoogle Scholar
  5. 5.
    Cao X Q, Vassenb R, and Stoever D, J Eur Ceram Soc 24 (2004) 1.CrossRefGoogle Scholar
  6. 6.
    Srikanth V, Subbarao E C, Agrawal D K, Huang C Y, and Roy R, J Am Ceram Soc 74 (1991) 365.CrossRefGoogle Scholar
  7. 7.
    Wagner C, Naturwissenschaften, 31 (1943) 265.CrossRefGoogle Scholar
  8. 8.
    Kiukola K, and Wagner C, J Electrochem Soc 104 (1957) 379.CrossRefGoogle Scholar
  9. 9.
    Kingery W D Jr, Pappis J, Doty M E, and Hill D C, J Am Ceram Soc 42 (1959) 393.CrossRefGoogle Scholar
  10. 10.
    Heuer A H, and Hobbs LW, (eds) Science and Technology of Zirconia-I (Advances in Ceramics), American Ceramic Society (1981).Google Scholar
  11. 11.
    Rühle M, Heuer A H, and Claussen N, (eds) Science and Technology of Zirconia-II (Advances in Ceramics), American Ceramic Society (1984).Google Scholar
  12. 12.
    Somiya S, Yamamoto N, and Yanagida H, (eds) Science and Technology of Zirconia-III (Advances in Ceramics), American Ceramic Society (1988).Google Scholar
  13. 13.
    Meriani S, and Palmonari C, (eds) Zirconia-88 (Advances in Zirconia Science and Technology), Europian Ceramic Society (1989).Google Scholar
  14. 14.
    Badwal S P S, Bannister M J, and Hannink R H J, (eds) Science and Technology of ZirconiaV, CRC Press (1993).Google Scholar
  15. 15.
    Subbarao E C, Adv Ceram 3 (1981) 1.Google Scholar
  16. 16.
    Tien T Y, and Subbarao E C, J Chem Phys 39 (1963) 1014.CrossRefGoogle Scholar
  17. 17.
    Tien T Y, and Subbarao E C, J Am. Ceram. Soc. 46 (1963) 489.CrossRefGoogle Scholar
  18. 18.
    Adam J, and Rogers M D, Acta Cryst 12 (1959) 951.CrossRefGoogle Scholar
  19. 19.
    Smith D K, and Newkirk H W, Acta Cryst 18 (1965) 983.CrossRefGoogle Scholar
  20. 20.
    Ruff O, and Ebert F, Z Anorg Ch 180 (1929) 19.CrossRefGoogle Scholar
  21. 21.
    Teufer G, Acta Cryst 15 (1962) 1187.CrossRefGoogle Scholar
  22. 22.
    Liao Y, ZrO 2-Practical Electron Microscopy and Data Base-An online book,
  23. 23.
    Hannink R H J, Kelly P M, and Muddle B C, J Am Ceram Soc 87 (2000) 461.Google Scholar
  24. 24.
    Kelly J R, Denry I, Dent Mater 24 (2008) 289.CrossRefGoogle Scholar
  25. 25.
    Kelly P M, and Ball C J, J Am Ceram Soc 69 (1986) 259.CrossRefGoogle Scholar
  26. 26.
    Kelly P M, Wauchope C J, Key Eng Mater 153–154 (1998) 97.CrossRefGoogle Scholar
  27. 27.
    Kelly P M, Rose L R F, Prog Mater Sci 47 (2002) 463.CrossRefGoogle Scholar
  28. 28.
    Zhang Y L, Jin X J, Rong Y H, Hsu T Y, Jiang D Y, and Shi J L, Acta Mater 54 (2006) 1289.CrossRefGoogle Scholar
  29. 29.
    Jin X J, Curr Opin Solid State Mater Sci 9 (2005) 313.CrossRefGoogle Scholar
  30. 30.
    Becher P F, Acta Metall 34 (1986) 1885.CrossRefGoogle Scholar
  31. 31.
    Zhang Y L, Jin X J, and Hsu T Y, J Eur Ceram Soc 23 (2003) 685.CrossRefGoogle Scholar
  32. 32.
    Baun W L, Science 140 (1963) 1330.CrossRefGoogle Scholar
  33. 33.
    Wolten G M, J Am Ceram Soc 46 (1963) 418.CrossRefGoogle Scholar
  34. 34.
    Patil R N, and Subbarao E C, Acta Crystallogr Sect A 26 (1970) 535.CrossRefGoogle Scholar
  35. 35.
    Patil R N, and Subbarao E C, J Appl Crystallogr 2 (1969) 281.CrossRefGoogle Scholar
  36. 36.
    Maiti H S, Gokhale K V G K, Subbarao E C, J Am Ceram Soc 55 (1972) 317.CrossRefGoogle Scholar
  37. 37.
    Fehrenbacher L L, and Jacobson L A, J Am Ceram Soc 48 (1965) 157.CrossRefGoogle Scholar
  38. 38.
    Ruh R, Garrett H J, Domagala R F, and Tallan N M, J Am Ceram Soc 51 (1968) 23.CrossRefGoogle Scholar
  39. 39.
    Vest R W, and Tallan N M. J Am Ceram Soc 48 (1965) 472.CrossRefGoogle Scholar
  40. 40.
    Wolten G M, J Am Chem Soc 80 (1958) 4772.CrossRefGoogle Scholar
  41. 41.
    Tien T Y, J Am Ceram Soc 47 (1964) 430.CrossRefGoogle Scholar
  42. 42.
    Garvie R C, J Phys Chem 69 (1965) 1238.CrossRefGoogle Scholar
  43. 43.
    Djurado E, Bouvier P, and Lucazeau G, J Solid State Chem 149 (2000) 399.CrossRefGoogle Scholar
  44. 44.
    Chevalier J, Gremillard L, Virkar A V, and Clarke D R, J Am Ceram Soc 92 (2009) 1901.CrossRefGoogle Scholar
  45. 45.
    Evans A G, and Heuer A H, J Am Ceram Soc 63 (1980) 241.CrossRefGoogle Scholar
  46. 46.
    Bansal G K, and Heuer A H, Acta Metall 20 (1972) 1281.CrossRefGoogle Scholar
  47. 47.
    Yoshimura M, Am Ceram Soc Bull 67 (1988) 1950.Google Scholar
  48. 48.
    Chevalier J, Cales B, and Drouin J M, J Am Ceram Soc 82 (1999) 2150.CrossRefGoogle Scholar
  49. 49.
    Scott H G, J Mater Sci 10 (1975) 1527.CrossRefGoogle Scholar
  50. 50.
    Sheu T S, TienT Y, and Chen I W, J Am Ceram Soc 75 (1992) 1108.CrossRefGoogle Scholar
  51. 51.
    Weber B C, Technical Report ARL 64-205, Aerospace Research Laboratories, U.S.A.F. (1964)—reproduced in refs. 3 and 34.Google Scholar
  52. 52.
    Evans A G, J Am Ceram Soc 73 (1990) 187.CrossRefGoogle Scholar
  53. 53.
    Kisi E H, and Howard C J, Key Eng Mater 153154 (1998) 1.CrossRefGoogle Scholar
  54. 54.
    Shukla S, and Seal S, Int Mater Rev 50 (2005) 45.CrossRefGoogle Scholar
  55. 55.
    Mazdiyasni K S, Lynch C T, and Smith J S, J Am Ceram Soc 49 (1966) 286.CrossRefGoogle Scholar
  56. 56.
    Mcmeeking R M, Evans A G, J Am Ceram Soc 65 (1981) 242.CrossRefGoogle Scholar
  57. 57.
    Lange F F, J Mater Sci 17 (1982) 240.CrossRefGoogle Scholar
  58. 58.
    Lange F F, J Mater Sci 17 (1982) 225.CrossRefGoogle Scholar
  59. 59.
    Porter D L, and Heuer A H, J Am Ceram Soc 60 (1977) 183.CrossRefGoogle Scholar
  60. 60.
    Budiansky B, Hutchinson J W, and Lambropoulos J C, Int J Solids Struct 19 (1983) 337.CrossRefGoogle Scholar
  61. 61.
    Eichler J, Eisele U, and Rodel J, J Am Ceram Soc 87 (2004) 1401.CrossRefGoogle Scholar
  62. 62.
    Basu B, Int Mater Rev 50 (2005) 239.CrossRefGoogle Scholar
  63. 63.
    Ruhle M, and Evans A G, Prog Mater Sci 33 (1989) 85.CrossRefGoogle Scholar
  64. 64.
    Li P, Chen I -W, and Penner-Hahn J, J Am Ceram Soc 77 (1994) 118.Google Scholar
  65. 65.
    Li P, Chen I -W, and Penner-Hahn J E, J Am Ceram Soc 77 (1994) 1281.Google Scholar
  66. 66.
    Li P, Chen I -W, and Penner-Hahn J E, J Am Ceram Soc 77 (1994) 1289.Google Scholar
  67. 67.
    Hannink R H J, Johnston K A, Pascoe R T, and Garvie R C, in Advanced Ceramics Science Technology Zirconia, American Ceramic Society, Ohio (1990) p. 116.Google Scholar
  68. 68.
    Garvie R C, Hannink R H J, and Urbani C, Ceramurg Int 8 (1980) 19.CrossRefGoogle Scholar
  69. 69.
    Drennan J, and Hannink R H J, J Am Ceram Soc 69 (1986) 541.CrossRefGoogle Scholar
  70. 70.
    Hughan R R, and Hannink R H J, J Am Ceram Soc 69 (1986) 556.CrossRefGoogle Scholar
  71. 71.
    Farmer S C, Heuer A H, and Hannink R H J E, J Am Ceram Soc 70 (1987) 431.Google Scholar
  72. 72.
    Hannink R H J, and Garvie R C, J Mater Sci 17 (1982) 2637.CrossRefGoogle Scholar
  73. 73.
    Hannink R H J, J Mater Sci 18 (1983) 457.CrossRefGoogle Scholar
  74. 74.
    Basu B, Vleugels J, and Van Der Biest O, J Mater Res 16 (2001) 2158.CrossRefGoogle Scholar
  75. 75.
    Vleugels J, Yuan Z X, and Van Der Biest O, J Eur Ceram Soc 22 (2002) 873.CrossRefGoogle Scholar
  76. 76.
    Swain M V, J Mater Sci Lett 5 (1986) 1159.CrossRefGoogle Scholar
  77. 77.
    Chung T, Song H, Kim G, and Kim D, J Am Ceram Soc 80 (1997) 2607.CrossRefGoogle Scholar
  78. 78.
    Vasylkiv O, Sakka Y, and Skorokhod V , J Am Ceram Soc 86 (2003) 299.Google Scholar
  79. 79.
    Basu B, Vleugels J, and Van Der Biest O, Mater SciEng A 380 (2004) 215.CrossRefGoogle Scholar
  80. 80.
    Basu B, Vleugels J, and Van Der Biest O, Mater Sci Eng A 366 (2004) 338.CrossRefGoogle Scholar
  81. 81.
    Hutchinson J W, Acta Metall 35 (1987) 1605.CrossRefGoogle Scholar
  82. 82.
    Heuer A H, and Ruhle M, Acta Metall, 33 (1985) 2101.Google Scholar
  83. 83.
    Porter D L, and Heuer A H, Adv Ceram 12 (1984) 653.Google Scholar
  84. 84.
    Rauchs G, Fett T, and Munz D, Eng Fract Mech 69 (2002) 389.CrossRefGoogle Scholar
  85. 85.
    Srinivasan G V, Jue J-F, Kuo S-Y, and Virkar A V, J Am Ceram Soc 72 (1989) 2098.Google Scholar
  86. 86.
    Chan C, Lunge F F, and Ruhle M, J Am Ceram Soc 74 (1991) 807.CrossRefGoogle Scholar
  87. 87.
    Subbarao E C, and Maiti H S in Proceedings of the Conference on High Temperature Solid Oxide Electrolytes, (ed) Salzano F J, Associated Universities Inc., New York (1983), p 151.Google Scholar
  88. 88.
    Subbarao E C, Trans Ind Ceram Soc 46 (1987) 65.CrossRefGoogle Scholar
  89. 89.
    Subbarao E C Sutter P H, and Hrizo J, J Am Ceram Soc 48 (1965) 443.Google Scholar
  90. 90.
    Subbarao E C, Ferroelecrrics 102 (1990) 267.CrossRefGoogle Scholar
  91. 91.
    Kröger F A, and Vink H J, in Solid State Physics, Vol. 3, (eds) Seitz F, and Turnbull D, Academic Press, New York (1956), p. 307.Google Scholar
  92. 92.
    Brook R J, in Electrical Conductivity in Ceramics and Glass, (ed) Tallan N M, Marcel Dekker, New York (1974), p 179.Google Scholar
  93. 93.
    Van Gool W, Principles of Defect Chemistry of Crystalline Solids, Academic Press, New York (1966).Google Scholar
  94. 94.
    Eyring L, and O’Keefe M (eds) The Chemistry of Extended Defects in Non-Metallic Solids, North-Holland, Amsterdam (1970).Google Scholar
  95. 95.
    Kofstad P, Nonstoichiemetry, Diffusion and Electrical Conductivity in Binary Metal Oxides, Wiley, New York (1972).Google Scholar
  96. 96.
    Kröger F A, Chemistry of Imperfect Crystals, Vol. 2, North Holland, Amsterdam (1974).Google Scholar
  97. 97.
    Singhal S C (ed) Proceedings of the First International Symposium on Solid Oxide Fuel Cells, The electrochemical Society Inc. NJ, USA (1989).Google Scholar
  98. 98.
    Devi P S, Sharma A D, and Maiti H S, Trans Ind Ceram Soc 63 (2004) 75.Google Scholar
  99. 99.
    Mahato N, Banerjee A, Gupta A, Omar S, and Balani K, Prog Mater Sci 72 (2015) 141.CrossRefGoogle Scholar
  100. 100.
    Chen K, Li N, Ai N, Li M, Cheng Y, Rickard W D A, Li J, and Jiang S P, J Mater Chem A 4 (2016) 17678.Google Scholar
  101. 101.
    Singh B, Ghosh S, Aich S, and Roy B, J Power Sources 339 (2017) 103.CrossRefGoogle Scholar
  102. 102.
    Zhuiykov S, and Miura N, Sens Actuators B 121 (2007) 639.CrossRefGoogle Scholar
  103. 103.
    Pham A Q, and Glass R S, Electrochim Acta 43 (1998) 2699.Google Scholar
  104. 104.
    Gunduz S, Dogu D, Deka D J, Meyer K E, Fuller A, Co A C, and Ozkan U S, Catal Today 323 (2019) 3.CrossRefGoogle Scholar
  105. 105.
    Ikeda S, Sakurai O, Uematsu K, Mizutani N, and Kato M, J Mater Sci 20 (1985) 4593.CrossRefGoogle Scholar
  106. 106.
    Catlow C R A, Chadwick A V, Greaves G N, and Moroney L M, Nature 312 (1984) 601.CrossRefGoogle Scholar
  107. 107.
    Catlow C R A, Chadwick A V, Greaves G N, and Moroney L M, J Am Ceram Soc 69 (1986) 131 272.CrossRefGoogle Scholar
  108. 108.
    Roth W L, Wong R, Goldman A I, Canova E, Kao Y H, and Dunn B, Solid State lon 18 & 19 (1986) 1115.Google Scholar
  109. 109.
    Yugami H, Koike A, and Ishigame M, Phys Rev B 44 (1991) 9214.CrossRefGoogle Scholar
  110. 110.
    Li X, and Hafskjold B, J. Phys. Condens. Matter 7 (1995) 1255.Google Scholar
  111. 111.
    Yamamura Y, Kawasaki S, and Sakai H, Solid State Ion 126 (1999) 181.CrossRefGoogle Scholar
  112. 112.
    Ahamer C, Opitz A K, Rupp G M, and Fleig J, J Electrochem Soc 164 (2017) F790.CrossRefGoogle Scholar
  113. 113.
    Tuller H L, Solid State Ion 131 (2000) 143.CrossRefGoogle Scholar
  114. 114.
    Bauerle J E, J Phys Chem Solids 30 (1969) 2657.CrossRefGoogle Scholar
  115. 115.
    Benítez-Rico A, García-Sánchez M F, Picquart M, Monroy-Peláez B M, and Santana-Rodríguez G, J Nanomater. (Hindawi) 2015 (2015) 1.Google Scholar
  116. 116.
    Kosacki I, and Anderson H U, Ionics 6 (2000) 294.CrossRefGoogle Scholar
  117. 117.
    Yamamoto O, Arati Y, Takeda asuo, Imanishi N, Mizutani Y, Kawai M, and Nakamura Y, Solid State Ion 79 (1995) 137.CrossRefGoogle Scholar
  118. 118.
    Xu G, Zhang Y-W, Liao C-S, and Yan C-H, Solid State Ion 166 (2004) 391.CrossRefGoogle Scholar
  119. 119.
    Chakrapani V, Chetan J, Christina C, and Kumar B, J Power Sources 147 (2005) 128.CrossRefGoogle Scholar
  120. 120.
    Okamoto M, Akimune Y, Furuya K, Hatano M, Yamanaka M, and Uchiyama M, Solid State Ion 176 (2005) 675.CrossRefGoogle Scholar
  121. 121.
    Jaisa A A, Muhammed Ali S A, Anwar M, Rao Somalu M, Muchtar A, Roslam W N, Isahak W, Tan C Y, Singh R, and Brandon N P, Ceram Int 43 (2017) 8119.Google Scholar
  122. 122.
    Robson L G, Reis S L, Muccillo E N S, Ceram Int 43 (2017) 10934.Google Scholar
  123. 123.
    Souza J P, Grosso R L, Muccillo R, and Muccillo E N S, Mater Lett 229 (2018) 53.CrossRefGoogle Scholar
  124. 124.
    Raghvendra, and Prabhakar S, J Eur Ceram Soc 35 (2015) 1485.CrossRefGoogle Scholar
  125. 125.
    Faryna M, Bobrowski P, Pędzich Z, and Bućko M M, Mater Lett 161 (2015), 352.CrossRefGoogle Scholar
  126. 126.
    Cordier A, El Khal H, Siebert E, and Steil M C, J Eur Ceram Soc 39 (2019) 2518.CrossRefGoogle Scholar
  127. 127.
    Xavier V, Devinder Y, Raj R, and West Anthony R, J Eur Ceram Soc 39 (2019) 1352.Google Scholar
  128. 128.
    Lughi V, and Clarke D R, Surf Coat Technol 200 (2005) 1287.CrossRefGoogle Scholar
  129. 129.
    Raghavan S, Wang H, Porter W D, Dinwiddie R B, and Mayo M J, Acta Mater 49 (2001) 169.CrossRefGoogle Scholar
  130. 130.
    Sun J, Hu Z, Li J, Zhang H, and Sun C, Ceram Int 40 (2014) 11787.CrossRefGoogle Scholar
  131. 131.
    Brandon J R, and Taylor R, Surf Coat Technol 39 (1989) 143.CrossRefGoogle Scholar
  132. 132.
    Padture N P, Gell M, and Jordan E H, Science 12 (2002) 296.Google Scholar
  133. 133.
    Liu Y, Vida V, Le Roux S, Blas F, Ansart F, and Lours P, J Eur Ceram Soc 35 (2015) 4269.CrossRefGoogle Scholar
  134. 134.
    Hirvonen A, Nowak R, Yamamoto Y, Sekino T, and Niihara K, J Eur Ceram Soc 26 (2006) 1497.CrossRefGoogle Scholar
  135. 135.
    Nakonieczny D S, Ziębowicz A, Paszenda Z K, and Krawczyk C, Biocybern Biomed Eng 37 (2017) 229.Google Scholar
  136. 136.
    Sabaliauskas V, Juciute R, Bukelskiene V, Rutkunas V, Trumpaite-Vanagiene R, and Puriene A, Stomatologija 13 (2011) 75.Google Scholar
  137. 137.
  138. 138.
    Roufosse M, and Klemens P G, Phys Rev B 7 (1973) 5379.CrossRefGoogle Scholar
  139. 139.
    Naumann M, Ernst J, Reich S, Weißhaupt P, and Beuer F, Clin Oral Investig 15 (2011) 657.CrossRefGoogle Scholar
  140. 140.
    Federlin M, Männer T, Hiller K A, Schmidt S, and Schmalz G, Clin Oral Investig 10 (2006) 126.CrossRefGoogle Scholar
  141. 141.
    Brackett M G, Lockwood P E, Messer R L W, Lewis J B, Bouillaguet S, and Wataha J C, Dent Mater 24 (2008) 450.Google Scholar
  142. 142.
    Tsitrou E A, Northeast S E, and van Noort R, J Dent 35 (2007) 68.CrossRefGoogle Scholar
  143. 143.
    Huang X, Zheng X, Zhao G, Zhong B, Zhang X, and Wen G, Mater Chem Phys 143 (2014) 845.CrossRefGoogle Scholar
  144. 144.
    Kelly J R, J Evid Based Dent Pract 11 (2011) 203.CrossRefGoogle Scholar
  145. 145.
    Beuer F, Schweiger J, Eichberger M, Kappert H F, Gernet W, and Edelhoff D, Dent Mater 25 (2009) 121.CrossRefGoogle Scholar
  146. 146.
    Panwar S S, Umasankar P T, Balasubramanian K, and Venkataraman B, Bull MaterSci 39 (2016) 321.CrossRefGoogle Scholar
  147. 147.
    Derelioglu Z, Carabat A L, Song G M, Van der Zwaag S, and Sloof W G, J Eur Ceram Soc 35 (2015) 4507.Google Scholar
  148. 148.
    Subhasis N, Indranil M, and Jyotsna D M, Ceram Int 41 (2015) 5247.CrossRefGoogle Scholar
  149. 149.
    Liu B, Liu Y, Zhu C, Xiang H, Chen H, Sun L, Gao Y, and Zhou Y, J Mater Sci Technol 35 (2019) 833.CrossRefGoogle Scholar
  150. 150.
    Kirubaharan A M K, Kuppusami P, Chakravarty S, Ramachandran D, and Singh A, J Alloys Compd 722 (2017) 585.Google Scholar
  151. 151.
    Pilathadka S, Vahalová D, and Vosáhlo T, Prague Med Rep 108 (2007) 5.Google Scholar
  152. 152.
    Güngör B M, Aydın C, Yılmaz H, Gül E B, J Oral Implantol 40 (2014) 485.Google Scholar
  153. 153.
    Osman R B, and Swain M V, Materials 8 (2015) 932.CrossRefGoogle Scholar
  154. 154.
    Nakonieczny D S, Ziębowicz A, Paszenda Z K, and Krawczyk C, Biocybern Biomed Eng 37 (2017) 229.CrossRefGoogle Scholar
  155. 155.
    Manicone P F, Iommetti P R, and Raffaelli L, J Dent 35 (2007) 819.CrossRefGoogle Scholar
  156. 156.
    Torricelli P, Verne E, Brovarone C V, Appendino P, Rustichelli F, Krajewski A, Ravaglioli A, Pierini G, Fini M, and Giavaresi G, Biomaterials 22 (2001) 2535.CrossRefGoogle Scholar
  157. 157.
    Dion I, Bordenave L, Lefebvre F, Bareille R, Baquey C, Monties J R, and Havlik P, J Mater Sci Mater Med 5 (1994) 18.CrossRefGoogle Scholar
  158. 158.
    Suárez M J, Lozano J F L, Salido M P, and Martínez F, Int J Prosthodont 17 (2004) 35.Google Scholar
  159. 159.
    Aboushelib M N, De Jager N, and Kleverlaan C J, Feilzer A J, Dent Mater 21 (2005) 984.CrossRefGoogle Scholar
  160. 160.
    Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, and Liu C, Li Y, Wang P, and He Y, J Eur Ceram Soc 39 (2019) 661.CrossRefGoogle Scholar
  161. 161.
    Mota Y A, Cotes C, Carvalho R F, Machado J P B, Leite F P P, Souza Rodrigo O A, and Ozccan M, J Biomed Mater Res B Appl Biomater 105B (2017) 1972.Google Scholar
  162. 162.
    Ramesh S, Sara L KY, and Tan C Y, Ceram Int 44 (2018) 20620.Google Scholar
  163. 163.
    Ling Y, Nakanishib Y, Alaoa A-R, Song X-F, Abduo J, and Zhang Y, Procedia CIRP 65 (2017) 284.Google Scholar
  164. 164.
    Schünemann F H, Galárraga-Vinueza M E, Magini R, Fredel M, Silva F, Souza J C M, Yu Z, Henriques B, Mater Sci Eng C 98 (2019) 1294.Google Scholar
  165. 165.
    Suveen K, Saurabh K, Sachchidanand T, Saurabh S, Manish S, Birendra Kumar Y, Saro K, Toan T T, Ajay Kumar D, Ashok M, Gopal S J, Sagar M, and Dhar M B, Adv Sci 2 (2015) 1500048.CrossRefGoogle Scholar
  166. 166.
    Sinnott S B, and Andrews R, Crit Rev Solid State Mater Sci 26 (2001) 145.CrossRefGoogle Scholar
  167. 167.
    Zhu Y, Murali S, Cai W, Li X, Won S J, Potts J R, and Ruoff R S, Adv Mater 22 (2010) 3906.Google Scholar
  168. 168.
    Pratyasha M, Siddharth R, Neelima M, and Kantesh B, Metall Mater Trans A, 46A (2015) 2965.Google Scholar
  169. 169.
    Rodríguez A M, Poyato R, Gutiérrez–Mora F, Muñoz A, Gallardo–López A, Ceram Int 44 (2018) 17716.CrossRefGoogle Scholar
  170. 170.
    Carmen M-F, Ana M-R, Cristina R T, Emilio J-P, Cristina L-P, Rosalía P, and Angela G-L, J Alloys Compd 777 (2019) 213.CrossRefGoogle Scholar
  171. 171.
    Nina O, and Frank K, Ceram Int 44 (2018) 16931.CrossRefGoogle Scholar
  172. 172.
    Kurapovaa O Y, Glumova O V, Lomakina I V, Sergey N G, Mikhail M, Pivovarov K, Julia V, and Konakova V G, Ceram Int 44 (2018) 15464.Google Scholar
  173. 173.
    Gutiérrez-Mora F, Morales-Rodríguez A, Gallardo-López A, and Poyato R, J Eur Ceram Soc 39 (2019) 1381.Google Scholar
  174. 174.
    Liu J, Yan H, Reece M J, and Kyle J, J Eur Ceram Soc 32 (2012) 4185.CrossRefGoogle Scholar
  175. 175.
    Rafael C-C, Malmal M B, Diego G-G, Rodrigo M, and Arturo D-R, J Eur Ceram Soc 38 (2018) 3994.CrossRefGoogle Scholar
  176. 176.
    Marinha D, and Manue B, J Eur Ceram Soc 39 (2019) 389.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Pradyut Sengupta
    • 1
  • Arjak Bhattacharjee
    • 2
    • 3
  • Himadri Sekhar Maiti
    • 2
    Email author
  1. 1.Department of Advanced Materials TechnologyCSIR–Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.Department of Ceramic TechnologyGovernment College of Engineering and Ceramic TechnologyKolkataIndia
  3. 3.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations