Advertisement

Single Crystal Growth via Solid → Solid Transformation of Glass

  • Himanshu JainEmail author
  • Dmytro Savytskii
  • Volkmar Dierolf
Technical Paper
  • 13 Downloads

Abstract

Fabrication of single crystals of materials by conventional methods, which decompose or undergo incongruent melting upon melting, has limited the development of advanced technologies. A solution to this challenge was demonstrated a few years ago using laser heating in a localized region to minimize undesirable nucleation, and then scanning the beam to obtain single crystal growth at the crystallization temperature of glass that was usually significantly below its melting temperature. An overview of the development of this new mode of crystal growth including some new results and insights is presented here. The discovery of rotating lattice single crystal as a novel form of meta-material and its characteristics in relation to process parameters are discussed in detail. Preliminary observations suggest strong correlation between the shape of growth front and rate of lattice rotation. Finally, challenges to single crystal growth via solid → solid transformation are exposed, which include the high interfacial stresses from density difference and the thermal expansion mismatch, of extremely steep T gradients due to highly localized (~μm) laser heating, and of the preferential diffusion of certain elements in the case of incongruent crystallization.

Keywords

Single crystal growth Laser fabrication Glass Rotating lattice crystal Solid-state crystallization 

Notes

Acknowledgements

This work has been supported by the Basic Energy Sciences Division, Department of Energy (Project DE-SC0005010). The authors thank Nobumichi Tamura for his help with the X-ray micro-diffraction studies over the years at Lawrence Berkeley National Laboratory.

References

  1. 1.
    National Research Council, Frontiers in Crystalline Matter: from Discovery to Technology, National Academies Press, Washington, DC (2009). ISBN 978-0-309-13800-0.Google Scholar
  2. 2.
    Richter T M M, and Niewa R, Inorganics 2 (2014) 29.CrossRefGoogle Scholar
  3. 3.
    Savytskii D, Knorr B, Dierolf V, and Jain H, Sci Rep 6 (2016) 23324.  https://doi.org/10.1038/srep23324.CrossRefGoogle Scholar
  4. 4.
    Varshneya A K, Fundamentals of Inorganic Glasses, vol 3, Academic Press, Cambridge (1994).Google Scholar
  5. 5.
    Biegelsen D K, Johnson N M, Bartelink D J, Moyer M D, Gibbons J F, Hess L D, and Sigmon T W, in Laser and Electron-Beam Solid Interactions and Materials Processing, (eds) Gibbons J F, Hess L D, and Sigmon T W, Elsevier, Amsterdam (1981), p 487.Google Scholar
  6. 6.
    Honma T, Benino Y, Fujiwara T, Komatsu T, and Sato R, Appl Phys Lett 82 (2003) 892.CrossRefGoogle Scholar
  7. 7.
    McAnany S D, Veenhuizen K J, Nolan D A, Aitken B G, Dierolf V, and Jain H, Cryst Growth Des (in press).Google Scholar
  8. 8.
    Scott C E, Strok J M, and Levinson L M, US Patent 5,549,746 27 Aug 1996.Google Scholar
  9. 9.
    Kang S J L, Park J H, Ko S Y, and Lee H Y, J Am Ceram Soc 98 (2015) 347.CrossRefGoogle Scholar
  10. 10.
    Cullis A G, Rep Prog Phys 48 (1985) 1155.CrossRefGoogle Scholar
  11. 11.
    Stone A, Sakakura M, Shimotsuma Y, Stone G, Gupta P, Miura K, Hirao K, Dierolf V, and Jain H, Opt Exp 17 (2009) 23284.CrossRefGoogle Scholar
  12. 12.
    Savytskii D, Sanders M, Golovchak R, Knorr B, Dierolf V, and Jain H, J Am Ceram Soc 97 (2014) 198.CrossRefGoogle Scholar
  13. 13.
    Savytskii D, Atwater K, Dierolf V, and Jain H, J Am Ceram Soc 97 (2014) 3458.CrossRefGoogle Scholar
  14. 14.
    Savytskii D, Jain H, Tamura N, and Dierolf V, Sci Rep 6 (2016) 36449.  https://doi.org/10.1038/srep36449.CrossRefGoogle Scholar
  15. 15.
    Meyers M A, McKittrick J, and Chen P Y, Science 339 (2013) 773.CrossRefGoogle Scholar
  16. 16.
    Bagmut A G, Grigorov S N, Kosevich V M, Lyubchenko E A, Nikolaychuk G P, Samoylenko D N, Yavetskiy R P, Balazyuk V N, Eremenko A I, Raransky N D, and Lopin A V, Funct Mater 15 (2008) 332.Google Scholar
  17. 17.
    Barabash R I, Ice G E, Larson B C, and Yang, W, Rev Sci Instrum 73 (2002) 1652.CrossRefGoogle Scholar
  18. 18.
    Korsunsky A M, Hofmann F, Abbey B, Song X, Belnoue J P, Mocuta C, and Dolbnya I, Int J Fatigue 42 (2012) 1.CrossRefGoogle Scholar
  19. 19.
    Yang J, Liu Y, Lin H-M, and Chen C-C, Adv Mater 16 (2004) 713.CrossRefGoogle Scholar
  20. 20.
    Palache C, Berman H, and Frondel C, The System of Mineralogy, Willey, New York, edition 7, vol 1 (1944) p 270.Google Scholar
  21. 21.
    Bayliss P, and Nowacki W, Z Kristallogr 135 (1972) 308.CrossRefGoogle Scholar
  22. 22.
    Scavnicar S, Z Kristallogr 114 (1960) 85.CrossRefGoogle Scholar
  23. 23.
    Savytskii D, Dierolf V, and Jain H, Unpublished.Google Scholar
  24. 24.
    Honma T, and Komatsu T, Opt Express 18 (2010) 8019.CrossRefGoogle Scholar
  25. 25.
    Savytskii D, Jain H, Au-Yeung C, Dierolf V, and Tamura N, J Cryst Growth Des 17 (2017) 1735. http://dx.doi.org/10.1021/acs.cgd.6b01709.CrossRefGoogle Scholar
  26. 26.
    Stadler B J, and Mizumoto T, IEEE Photon J 6 (2014) 9.CrossRefGoogle Scholar
  27. 27.
    Block A D, Dulal P, Stadler B J, and Seaton N C, IEEE Photon J 6 (2014) 1.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Institute for Functional Materials and DevicesLehigh UniversityBethlehemUSA

Personalised recommendations