Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 10, pp 2673–2686 | Cite as

Microstructure and Creep Behavior Property of Dissimilar Joints Between Incoloy 800HT and P91 Steel

  • V. Lakshmanan
  • P. SathiyaEmail author
Technical Paper
  • 62 Downloads

Abstract

Dissimilar joints are commonly encountered in the fabrication of high-temperature power plant components. In this current work, dissimilar joints between P91 and Incoloy 800HT have been produced using two different types of filler materials like ER505 and ERNiCr-3 with the GTAW welding process. Microstructure characterization of the weld metal reveals the presence of columnar dendritic structures. The microhardness value is higher in ER 505 filler-based weldment due to the formation of δ ferrite, M23C6 and MX precipitates. Impression creep test of dissimilar weldments has been conducted with the help of flat bottom cylindrical punch. The impression creep test has been carried out at the temperature of 873.15 K and 923.15 K with a constant load of 135 Mpa with 7200 s of holding time by using a vacuum of the order of 1 × 10−6 mbar in the heating chamber. The impression creep test result has revealed that the depth of penetration of weld with ER505 filler metal has a higher value compared to other weldments. The creep strength of the specimen is compared by the calculated activation energy of each specimen. The creep strength of the weld with ER505 filler metal (Exp No 4) is higher than that of all the other weld’s specimens. Hence, the dissimilar weld with ER505 as a filler material by GTAW process will produce better results.

Keywords

P91 steel Incoloy 800HT Columnar dendritic structure Creep resistance Microhardness 

Notes

References

  1. 1.
    Mortezaie A, and Shamanian M, Int J Press Vessels Pip 116 (2014) 37.CrossRefGoogle Scholar
  2. 2.
    Abd El-Azim M E, El-Desoky O E, Ruoff H, Kauffmann F, and Roos E, Mater Sci Technol 29 (2013) 1027.CrossRefGoogle Scholar
  3. 3.
    Lakshmanan V, and Sathiya P, Surf Rev Lett (2018)  https://doi.org/10.1142/s0218625x18501901.
  4. 4.
    Sun Z, Int J Press Vessels Pip 94 (1996) 153.CrossRefGoogle Scholar
  5. 5.
    Joseph A, Rai Sanjai K, Jaya Kumar T, and Murugan N, Int J Press Vessels Pip 82 (2005) 700.CrossRefGoogle Scholar
  6. 6.
    Jones W K C, Weld J 53 (1974) 225.Google Scholar
  7. 7.
    Lakshmanan V, Sathiya P, and Arivazhagan B, Mater High Temp (2018)  https://doi.org/10.1080/09603409.2018.1503442.
  8. 8.
    Nayyeri G, and Mahmudi R, Mater Sci Eng A 527 (2010) 669.CrossRefGoogle Scholar
  9. 9.
    Akram J, Kalvala P R, Misra M, and Charit I, Mater Sci Eng A 688 (2017) 396.CrossRefGoogle Scholar
  10. 10.
    Zhao J, Gong J, Saboo A, Dunand D C, and Olson G B, Acta Mater 149 (2018) 19.CrossRefGoogle Scholar
  11. 11.
    Sireesha M, Albert S K, and Sundaresan S, Int J Press Vessels Pip 79 (2002) 819.Google Scholar
  12. 12.
    Hanninen H, Aaltonen P, Brederholm A, Ehrnstén U, Gripenberg H, Toivonen A, and Virkkunen I, VTT Tiedotteita (2006) 23.Google Scholar
  13. 13.
    Paul V T, Vijayanand V D, Sudha C, and Saroja S, Metall. Mater. Trans (A) 48 (2017) 425.Google Scholar
  14. 14.
    Akrama J, Kalvalaa P R, Misraa M, and Charit I, Mater Sci Eng A 688 (2017) 396.Google Scholar
  15. 15.
    Shah Hosseini H, Shamanian M, and Kermanpur A, Int J Press Vessels Pip 144 (2016) 18.CrossRefGoogle Scholar
  16. 16.
    Dinesh W, Rathod P K, Singh B, SunilPandey S, and Aravindan A, Mater Sci Eng A 666 (2016) 100.CrossRefGoogle Scholar
  17. 17.
    Dehmolaei R, Shamanian M, and Kermanpur A, Mater Charact 59 (2008) 1447.Google Scholar
  18. 18.
    Dehnavi M, Vafaeenezhad H, Khakzadi M, Nayebpashaee N, and Eivani A R, Int J Cast Met Res 30 (2017) 70.CrossRefGoogle Scholar
  19. 19.
    Sastry D H, Impression creep technique-an overview. Mater Sci Eng A 409 (2005) 67.CrossRefGoogle Scholar
  20. 20.
    Liu W, Liu X, Lu F, Tang X, Cui H, and Gao Y, Mater Sci Eng A 644 (2015) 337.CrossRefGoogle Scholar
  21. 21.
    Cao J, Gong Y, and Yang Z C, Mater Sci Eng A 528 (2011) 6103.CrossRefGoogle Scholar
  22. 22.
    Thomas paul V, Vijayan V D, Sudha C, and Saroja S, Metall. Mater. Trans (A) 48 (2017) 425.Google Scholar
  23. 23.
    Mathew Naveena M D, and Vijayan D, Journal of Mater Eng Perform 22 (2013) 492.  https://doi.org/10.1007/s11665-012-0290-4.
  24. 24.
    Umar M, and Sathiya P, Adv Eng Mater 20 (2018) 1.CrossRefGoogle Scholar
  25. 25.
    Azadia M, and Azadib M, Mater Sci Eng A 689 (2017) 298.Google Scholar
  26. 26.
    Panait C G, Zielińska-Lipiec A, Koziel T, Czyrska-Filemonowicz A, Gourgues-Lorenzon A F, and Bendick W, Mat Sci Eng A 527 (2010) 4062.Google Scholar
  27. 27.
    Dudova N, Plotnikova A, Molodov D, Belyakov A, and Kaibyshev R, Mater Sci Eng A 534 (2012) 632.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Production EngineeringNational Institute of TechnologyTiruchirappalliIndia

Personalised recommendations