Production of Potassium Chloride from K-Feldspar Through Roast–Leach–Solvent Extraction Route

  • Jayashree SamantrayEmail author
  • Amit Anand
  • Barsha Dash
  • Malay K. Ghosh
  • Ajay K. Behera
Technical Paper


This work focuses on extraction of potassium from feldspar through pyro-hydrometallurgical route. Calcium chloride was used as roasting agent for feldspar. Effect of various operating variables, viz. time, roasting temperature and CaCl2 dose on extent of roasting, were thoroughly studied. Roasting 10 g of feldspar with 17 g of CaCl2 at 900 °C for 1 h resulted in 99.9% conversion of K2O to KCl. Order of feldspar roasting was found to be around 2, and activation energy requirement was 136.6 kJ/mol. Calcium and sodium were leached along with potassium from chloride-roasted K-Feldspar with water at room temperature. To generate a pure solution of potassium from the leach liquor containing K, Ca and Na, it was selectively extracted from leach liquor by using dibenzo-18-crown-6 ether as extractant and m-cresol as diluent. Loading of potassium was carried out at an A/O ratio of 2:1, while stripping was carried out in water at O/A ratio of 2:1. 99.5% pure crystals of KCl were obtained on evaporation of the strip solution. A schematic flowsheet has been provided for the preparation of pure KCl from feldspar.


Potassium chloride K-Feldspar Chloride roasting Solvent extraction Dibenzo-18-crown-6 ether 



The authors are thankful to the Director, CSIR-IMMT Bhubaneswar for his kind permission to publish this work. One of the authors (JS) expresses her gratitude to CSIR for providing the fellowship under XII plan period projects (Grant No. CSC-105). The authors also wish to gratefully acknowledge the assistance rendered by all the technical staffs for the characterisation studies.


  1. 1.
    Kinekar B K, Karnataka J Agric Sci 24 (2011) 1.Google Scholar
  2. 2.
    Rao J R, Nayak R, and Suryanarayana A, Asian J Chem 10 (1998) 690.Google Scholar
  3. 3.
    Indian Minerals Yearbook, (Part-II) 57th edn., Potash, Indian Bureau of Mines (2017).
  4. 4.
    Kumar G, Tanvar H, Pratap Y, and Dhawan N, Trans Indian Inst Met (2018).Google Scholar
  5. 5.
    Samantray J, Anand A, Dash B, Ghosh M K, and Behera A K, Rare Met Technol 1 (2019) 145.Google Scholar
  6. 6.
    Varadachari C, Ind Eng Chem Res 36 (1997) 4768.CrossRefGoogle Scholar
  7. 7.
    Yadav V P, Sharma T, and Saxena V. K, Int J Miner Process 60 (2000) 15.CrossRefGoogle Scholar
  8. 8.
    Kumanan M, Sathya G, Nandakumar V, and Berchmans L J, Int J Metall Mater Chem Eng (2016) 1.Google Scholar
  9. 9.
    Wang C, Yue H, Li C, Liang B, Zhu J, and Xie H, Ind Eng Chem Res 53 (2014) 7971.CrossRefGoogle Scholar
  10. 10.
    Orosco P, and Ruiz M del C, Thermochim Acta 605 (2015) 63.Google Scholar
  11. 11.
    Zhao H Q, Ma H L, Jin M, Hu H J, Feng A S, Li J and Liu Y X Nonmet Mines 26 (2003) 24.Google Scholar
  12. 12.
    Danjun T A N, Hongwen M A, Ge L I, Hao L I U, and Dan Z O U, Earth Sci Front 16 (2009) 269.CrossRefGoogle Scholar
  13. 13.
    Bakr M Y, Zatout A A, and Mouhamed M A, Interceram 28 (1979) 34.Google Scholar
  14. 14.
    Dasgupta A, Indian J Technol 13 (1975) 359.Google Scholar
  15. 15.
    Han X Z, Yao W T, Jin G Q, Hu B, and Deng Z T, Bull Mineral Petrol Geochemistry 21 (2002) 210.Google Scholar
  16. 16.
    Ye L, Yue H, Wang Y, Sheng H, Yuan B, Lv L, Li C, Liang B, Zhu J, and Xie H, Ind Eng Chem Res 53 (2014) 10557.CrossRefGoogle Scholar
  17. 17.
    Ciceri D, Oliveira M de, and Allanore A, Green Chem 19 (2017) 1.CrossRefGoogle Scholar
  18. 18.
    Haseli P, Majewski P, Christo F, Hammond B, and Bruno F, Ind Eng Chem Res (2019).Google Scholar
  19. 19.
    Fogler H S, Lunds K, and Mccune C C, Chem Eng Sci 30 (1975) 1325.CrossRefGoogle Scholar
  20. 20.
    Su S, Ma H, and Chuan X, Hydrometallurgy 156 (2015) 47.CrossRefGoogle Scholar
  21. 21.
    Marcus Y, and Asher L E, J Phys Chem 82 (1978) 1246.CrossRefGoogle Scholar
  22. 22.
    Burungale S H, Int J Curr Res 6 (2014) 8412.Google Scholar
  23. 23.
    Marcus Y, Asher L E, Hormadaly J, and Pross E, Hydrometallurgy 7 (1981) 27.CrossRefGoogle Scholar
  24. 24.
    Sheng H, Lv L, Liang B, Li C, Yuan B, and Ye L, Environ Earth Sci 73 (2015) 6871.CrossRefGoogle Scholar
  25. 25.
    Yuan B, Chun L, Liang B, Lü L, Hairong Y, Haoyi S and Ye L, Xie H, Chinese J Chem Eng 23 (2015) 1557.CrossRefGoogle Scholar
  26. 26.
    Zhang Y, Asselin E, and Li Z, J Chem Eng Japan 49 (2016) 111.CrossRefGoogle Scholar
  27. 27.
    Levenspiel O, Ind Eng Chem Res 38 (1999) 4140.CrossRefGoogle Scholar
  28. 28.
    Miller J D, and Wan R-Y, Hydrometallurgy 10 (1983) 219.CrossRefGoogle Scholar
  29. 29.
    Mazumder A K, Sharma T, and Rao T C, Int J Miner Process 38 (1993) 111.CrossRefGoogle Scholar
  30. 30.
    Zhong Y, Gao J, Chen P, and Guo Z, Energy and Fuels 31 (2017) 699.CrossRefGoogle Scholar
  31. 31.
    Hao Z, Desi S, and Hong B, Adv Mater Res 524527 (2012) 1136.Google Scholar
  32. 32.
    Pedersen C J, J Am Chem Soc 89 (1967) 7017.CrossRefGoogle Scholar
  33. 33.
    Pedersen C J, J Am Chem Soc 92 (1970) 386.CrossRefGoogle Scholar
  34. 34.
    Marcus Y, Geochim Cosmochim Acta 41 (1977) 1739.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.SMMMEIndian Institute of Technology BhubaneswarBhubaneswarIndia
  3. 3.CSST, School of ChemistrySambalpur UniversityJyoti ViharIndia

Personalised recommendations