Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2533–2546 | Cite as

Strengthening and Mechanical Properties of SiC and Graphite Reinforced Al6061 Hybrid Nanocomposites Processed Through Ultrasonically Assisted Casting Technique

  • A. Prasad ReddyEmail author
  • P. Vamsi Krishna
  • R. N. Rao
Technical Paper
  • 50 Downloads

Abstract

Al6061 alloy-based hybrid nanocomposites reinforced with 2wt% SiC and x wt% of graphite (x = 0, 0.5, 1, 1.5, 2 and 3) nanoparticles are fabricated through ultrasonically assisted casting technique. Microstructure, phases, grain size and fracture surfaces of the hybrid nanocomposites are studied to understand the mechanical properties. Microstructural studies revealed the uniform distribution of SiC and graphite nano-reinforcements in the matrix. The small-scale clusters appeared in the microstructure with the increase in graphite nanoparticles. The grain size, density, hardness and ultimate tensile strength of hybrid nanocomposites decreased with the rise of graphite in the composite material. The yield strength of the hybrid nanocomposites increased with increase in graphite up to 2 wt% and then decreased. SiC and graphite dual phase nanoparticles’ strengthening effect on yield strength was theoretically evaluated using various strengthening mechanisms including porosity effect. Enhancement of yield strength in hybrid nanocomposite due to strengthening mechanisms followed the trend \(\Delta \sigma_{{\Delta {\text{CTE}}}} > \Delta \sigma_{\text{Orowan}} > \Delta \sigma_{\text{HP}} > \Delta \sigma_{\text{load}}\). The predicted yield strength of hybrid nanocomposites obtained using the modified Clyne model and quadratic summation model were close to the experimental values. Fracture surfaces of hybrid nanocomposites exhibited brittle fracture with interdendritic cracking, stepwise facets and particle pull out with the increase in graphite content in the matrix.

Keywords

Hybrid metal matrix nanocomposites Strengthening mechanisms Grain refinement Microstructure Fractography 

Notes

References

  1. 1.
    Srivastava N, Chaudhari G P, Mater Sci Eng A 724 (2018) 207.CrossRefGoogle Scholar
  2. 2.
    Zeng X, Yu J, Fu D, Zhang H, Teng J, Vacuum 155 (2018) 375.CrossRefGoogle Scholar
  3. 3.
    Boostani A F, Tahamtan S, Jiang Z Y, Wei D, Yazdani S, Azari R K, Mousavian R T, Xu J, Zhang X, Gong D, Compos Part A Appl Sci Manuf 68 (2015) 163.Google Scholar
  4. 4.
    Fathy A, Oqail A A, Wagih A, Ceram Int (2018).Google Scholar
  5. 5.
    Ravindran P, Manisekar K, Kumar S V, Rathika P, Mater Des 51 (2013) 456.CrossRefGoogle Scholar
  6. 6.
    Alexander R, Murthy T S R C, Ravikanth K V, Prakash J, Mahata T, Bakshi S R, Krishnan M, Dasgupta K, Ceram Int 44 (2018) 9838.Google Scholar
  7. 7.
    Balci Ö, Aǧaoǧullari D, Gökçe H, Duman I, Öveçoǧlu M L, J Alloys Compd 586 (2014) 32.CrossRefGoogle Scholar
  8. 8.
    Reddy A P, Krishna P V, Rao R N, Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 231(4) (2017) 172.Google Scholar
  9. 9.
    Govender G, Ivanchev L, Burger H, Mulaba A, Chikwande H, J Compos Mat (2012) 53.Google Scholar
  10. 10.
    Li Q, Qiu F, Dong B X, Geng R, Lv M M, Zhao Q L, Jiang Q C, Mater Sci Eng A 735 (2018) 317.Google Scholar
  11. 11.
    Harichandran R, Selvakumar N, Int J Mech Sci 144 (2018) 826.CrossRefGoogle Scholar
  12. 12.
    Harichandran R, Selvakumar N, Arch Civ Mech Eng 16 (2016) 158.CrossRefGoogle Scholar
  13. 13.
    Moghadam A D, Omrani E, Lopez H, Zhou L, Sohn Y, Rohatgi P K, Mater Sci Eng A 702 (2017) 321.Google Scholar
  14. 14.
    Kannan C, Ramanujam R, J Alloys Compd 751 (2018) 193.CrossRefGoogle Scholar
  15. 15.
    Lü S, Xiao P, Yuan D, Hu K, Wu S, J. Mater. Sci. Technol. 34 (2018) 1617.Google Scholar
  16. 16.
    Mavhungu S T, Akinlabi E T, Onitiri M A, Varachia F M, Procedia Manuf 7 (2017) 182.Google Scholar
  17. 17.
    Reddy M P, Shakoor R A, Parande G, Manakari V, Ubaid F, Mohamed A M A, Gupta M, Prog Nat Sci Mater Int 27 (2017) 614.CrossRefGoogle Scholar
  18. 18.
    Gupta R, Chaudhari G P, Daniel B S S, Compos Part B Eng 140 (2018) 34.CrossRefGoogle Scholar
  19. 19.
    Eskin G I, Eskin D G, Ultrason Sonochem 10 (2003) 301.CrossRefGoogle Scholar
  20. 20.
    Khandelwal A, Mani K, Srivastava N, Gupta R, Chaudhari G P, Compos Part B Eng 123 (2017) 73.CrossRefGoogle Scholar
  21. 21.
    Sharma P, Sharma S, Khanduja D, Part Sci Technol 34 (2016) 22.CrossRefGoogle Scholar
  22. 22.
    Reddy A P, Krishna P V, Rao R N, Proc Inst Mech Eng Part N J Nanomater Nanoeng. Nanosyst 231 (2017) 172.Google Scholar
  23. 23.
    Zhang X, Li S, Pan B, Pan D, Zhou S, Yang S, Jia L, Kondoh K, J Alloys Compd 764 (2018) 288.Google Scholar
  24. 24.
    Aghdam M K H, Mahmoodi M J, Ansari R, J Alloys Compd 739 (2018) 177.Google Scholar
  25. 25.
    Bisht A, Srivastava M, Kumar R M, Lahiri I, Lahiri D, Mater Sci Eng A 695 (2017) 28.CrossRefGoogle Scholar
  26. 26.
    Xiao P, Gao Y, Yang C, Liu Z, Li Y, Xu F, Mater Sci Eng A 710 (2018) 259.CrossRefGoogle Scholar
  27. 27.
    Mirza F A, Chen D L, Materials (Basel) 8 (2015) 5153.CrossRefGoogle Scholar
  28. 28.
    Chen B, Shen J, Ye X, Jia L, Li S, Umeda J, Takahashi M, Kondoh K, Acta Mater 140 (2017) 325.CrossRefGoogle Scholar
  29. 29.
    Srivastava N, Chaudhari G P, Mater Sci Eng A 651 (2016) 247.Google Scholar
  30. 30.
    Zhang Z, Chen D L, Mater Sci Eng A 483–484 (2008) 152.Google Scholar
  31. 31.
    Deng K, Shi J, Wang C, Wang X, Wu Y, Nie K, Wu K, Compos Part A Appl Sci Manuf 43 (2012) 1284.Google Scholar
  32. 32.
    Park J G, Keum D H, Lee Y H, Carbon N Y 95 (2015) 698.CrossRefGoogle Scholar
  33. 33.
    Talwar D N, Mater Sci Eng B Solid State Mater Adv Technol 226 (2017) 9.CrossRefGoogle Scholar
  34. 34.
    Tsang D K L, Marsden B J, Fok S L, Hall G, Carbon N Y 43 (2005) 2906.CrossRefGoogle Scholar
  35. 35.
    Ramakrishnan N, Acta Mater 44 (1996) 77.CrossRefGoogle Scholar
  36. 36.
    Alizadeh M, Beni H A, Mater Res Bull 59 (2014) 294.CrossRefGoogle Scholar
  37. 37.
    Zadeh A S, Mater Sci Eng A 531 (2012) 118.Google Scholar
  38. 38.
    Wang M, Chen D, Chen Z, Wu Y, Wang F, Ma N, Wang H, Mater Sci Eng A 590 (2014) 254.Google Scholar
  39. 39.
    Kim C S, Sohn I, Nezafati M, Ferguson J B, Schultz B F, Gohari Z B, Rohatgi P K, Cho K, J Mater Sci 48 (2013) 4204.Google Scholar
  40. 40.
    Yao X, Zhang Z, Zheng Y F, Kong C, Quadir M Z, Liang J M, Chen Y H, Munroe P, Zhang D L, J Mater Sci Technol 33 (2017) 1030.Google Scholar
  41. 41.
    Ramkumar K R, Sivasankaran S, Alaboodi A S, J Alloys Compd 709 (2017) 141.CrossRefGoogle Scholar
  42. 42.
    Ozkaya S, Canakci A, Powder Technol 297 (2016) 16.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNIT WarangalWarangalIndia

Personalised recommendations