Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2511–2521 | Cite as

Surface Modification of Al5456/BNi-2 Composite by Pulsed Laser Surface Treatment

  • Hossein EsmailyEmail author
  • Ali Habibolahzadeh
  • Mohammad Tajally
Technical Paper
  • 11 Downloads

Abstract

Effect of pulsed laser surface treatment (PLST) on 5456 aluminum alloy/BNi-2 (nickel-based alloy) composite was investigated. Surface of the Al alloy was initially reinforced by BNi-2 powder via friction stir processing. Later, PLST was employed to promote proper reaction condition between the reinforcement and the matrix. The effects of laser power density and laser pulse distance on the microstructure, hardness and bending strength of the weldments were studied. BNi-2 particles mostly reacted with the matrix after PLST, leading to the precipitation of Al3Ni and Al9Ni2 in situ intermetallic compounds (IMC), while some others remained intact. Intact particles were increased toward the bottom of the fusion zone. As a result of the reactions, a new IMC/Al5456 composite was formed, having higher hardness. The composite possessed enhanced yield strength and reduced ultimate strength.

Keywords

Aluminum alloy BNi-2 powder AMC composite Friction stir processing Laser surface treatment 

Notes

References

  1. 1.
    Miranda G, Carvalho O, Soares D, and Silva F, J Compos Mater 50 (2016) 523.CrossRefGoogle Scholar
  2. 2.
    Baron R P, Wert J A, Gerard D A, and Wawner F E, J Mater Sci 32 (1997) 6435.CrossRefGoogle Scholar
  3. 3.
    Salmon C, Boland F, Colin C, and Delannay F, J Mater Sci 33 (1998) 5509.CrossRefGoogle Scholar
  4. 4.
    Yadav D, and Bauri R, Mater Lett 64 (2010) 664.CrossRefGoogle Scholar
  5. 5.
    Yadav D, and Bauri R, Mater Sci Eng A 528 (2011) 1326.CrossRefGoogle Scholar
  6. 6.
    Sahraeinejad S, Izadi H, Haghshenas M, and Gerlich A P, Mater Sci Eng A 626 (2015) 505.CrossRefGoogle Scholar
  7. 7.
    Patel V V, Badheka V, and Kumar A, Mater Manuf Process 31 (2016) 1573.CrossRefGoogle Scholar
  8. 8.
    Patel V V, Badheka V, and Kumar A, Metallogr Microstruct Anal 5 (2016) 278.Google Scholar
  9. 9.
    Qian J, Li J, Xiong J, Zhang F, and Lin X, Mater Sci Eng A 550 (2012) 279.CrossRefGoogle Scholar
  10. 10.
    Huang C, Li W, Planche M-P, Liao H, and Montavon G, J Mater Sci Technol 33 (2017) 507.CrossRefGoogle Scholar
  11. 11.
    Li W, Yang K, Yin S, Yang X, Xu Y, and Lupoi R, J Mater Sci Technol 34 (2017) 440.CrossRefGoogle Scholar
  12. 12.
    Wong T T, Liang G Y, He B L, and Woo C H, J Mater Process Technol 100 (2000) 142.CrossRefGoogle Scholar
  13. 13.
    Dutta Majumdar J, Ramesh Chandra B, and Manna I, Wear 262 (2007) 641.CrossRefGoogle Scholar
  14. 14.
    Kikin P Y, Pchelintsev A I, Rusin E E, and Zemlyakova N V, Met Sci Heat Treat 51 (2009) 346.CrossRefGoogle Scholar
  15. 15.
    Kikin P Y, Perevezentsev V N, Pchelintsev A I, and Rusin E E, J Mach Manuf Reliab 36 (2007) 467.CrossRefGoogle Scholar
  16. 16.
    Esmaily H, Habibolahzade A, and Tajally M, J Alloy Compd 725 (2017) 1044.CrossRefGoogle Scholar
  17. 17.
    Burton A W, Ong K, Rea T, and Chan I Y, Microporous Mesoporous Mater 117 (2009) 75.CrossRefGoogle Scholar
  18. 18.
    Sabbaghzadeh J, Hamedi M J, Ghaini F M, and Torkamany M J, Metall Mater Trans B 39 (2008) 340.CrossRefGoogle Scholar
  19. 19.
    Gao X-L, Liu J, Zhang L-J, and Zhang J-X, Mater Char 93 (2014) 136.CrossRefGoogle Scholar
  20. 20.
    Malek Ghaini F, Hamedi M J, Torkamany M J, and Sabbaghzadeh J, Scr Mater 56 (2007) 955.CrossRefGoogle Scholar
  21. 21.
    Akbari M, Saedodin S, Toghraie D, Shoja-Razavi R, and Kowsari F, Opt Laser Tech 59 (2014) 52.CrossRefGoogle Scholar
  22. 22.
    Ke L, Huang C, Xing L, and Huang K, J Alloy Compd 503 (2010) 494.CrossRefGoogle Scholar
  23. 23.
    Chuang Y-C, Lee S-C, and Lin H-C, Appl Surf Sci 253 (2006) 1404.CrossRefGoogle Scholar
  24. 24.
    Martínez-Villalobos M A, Figueroa I A, Suarez M A, Lara Rodríguez G Á, Novelo Peralta O, González Reyes G, López I A, Verduzco Martínez J, Díaz Trujillo C, J Mex Chem Soc 60 (2016) 67.Google Scholar
  25. 25.
    Ding Y, Northwood D O, and Alpas A T, Surf Eng 13 (1997) 31.CrossRefGoogle Scholar
  26. 26.
    Hawk J A, Franck R E, and Wilsdorf H G F, Metall Trans A. 19 (1988) 2363.CrossRefGoogle Scholar
  27. 27.
    Lee I S, Hsu C J, Chen C F, Ho N J, and Kao P W, Compos Sci Technol 71 (2011) 693.CrossRefGoogle Scholar
  28. 28.
    Zhang Q, Xiao B L, Wang W G, and Ma Z Y, Acta Mater 60 (2012) 7090.CrossRefGoogle Scholar
  29. 29.
    Skorokhod V V, Powder Metall Met Ceram 42 (2003) 437.CrossRefGoogle Scholar
  30. 30.
    Yeheskel O, and Dariel M P, Mater Sci Eng A. 354 (2003) 344.CrossRefGoogle Scholar
  31. 31.
    Tiryakioğlu M, Robinson J S, Salazar-Guapuriche M A, Zhao Y Y, and Eason P D, Mater Sci Eng A 631 (2015) 196.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Faculty of Materials and Metallurgical EngineeringSemnan UniversitySemnanIran

Personalised recommendations