Solid-State Electrolytes and Electrode Materials for Fuel Cell Application

  • Rajendra N. BasuEmail author
  • Jayanta Mukhopadhyay
  • Srabanti Ghosh
  • Abhijit Das Sharma


Depending on the temperature of operation, there are two major types of fuel cells based on solid-state electrolytes, namely (a) solid oxide fuel cells with an operating temperature of 500–1000 °C, (b) polymer electrolyte membrane fuel cells with an operating temperature in the range 60–200 °C. For the first category, primary focus is given on the development of conventional 8 mol% yttria-stabilized zirconia (8-YSZ)-based materials along with the addition of transitional metal ion dopants that reduce the sintering temperature of the 8-YSZ making fabrication of the cells easier. Possibility of using doped ceria-based electrolyte has also been discussed briefly. Various solid-state electrodes, especially the Sr-doped lanthanum manganite, Sr-doped lanthanum ferrite, Sr-doped lanthanum cobaltite and Sr- and Co-doped barium ferrite, etc., have been reviewed both in terms of general characteristic and also the developmental activities taken up in the authors’ laboratory. Similarly, solid-state anode materials, e.g. Ni–YSZ, as developed at authors’ laboratory have been critically reviewed with the emphasis on the fabrication of single cell. Functionality in terms of powder synthesis and fabrication of multilayer composite anode have been discussed with electrochemical performance. The cell performance is clinically correlated with the cell microstructure. For the other category, direct alcohol fuel cells (DAFCs) technology has earned a considerable interest as one of the promising electrochemical conversion devices. However, the challenges in DAFCs arise from the need for inexpensive and durable electrocatalyst. In this regard, nanostructured Pt or Pd metal-based electrocatalysts hold the key to its advances. Nanoclusters, nanowire and nanotubes of these noble metals or their alloys have been used extensively. Some of the recent research efforts towards development of both cathode and anode electrocatalysts along with their advantages and disadvantages for low-temperature fuel cell application are highlighted.


Soild-state electrolytes Solid-state electrodes Ionic conductivity Fucntional electrodes Nano-structured electrocatalysts Cell performance 



The authors are thankful to the Director, CSIR-CGCRI, Kolkata, for his kind permission to publish the work. One of the authors (SG) is thankful to Council of Scientific & Industrial Research (CSIR), India, for providing CSIR-Senior Research Associateship (Scientists’ Pool Scheme).


  1. 1.
    International Energy Agency. World Energy Outlook (2015).Google Scholar
  2. 2.
    Bossel U, European Fuel Cell Forum, European Fuel Cell Forum, Oberrohrdorf (2000).Google Scholar
  3. 3.
    Mahato N, Banerjee A, Gupta A, Omar S, and Balani K, Prog Mater Sci 72 (2015) 141.CrossRefGoogle Scholar
  4. 4.
    Hallinan Jr. D J, and Balsara N P, Annual Rev Mater Res 43 (2013) 503.CrossRefGoogle Scholar
  5. 5.
    Perry M L, and Fuller T, J Electrochem Soc 149 (2002) S59.CrossRefGoogle Scholar
  6. 6.
    Wang Y, Chen K S, Mishler J, Cho S C, and Adroher X C, Appl Energy 88 (2011) 981.CrossRefGoogle Scholar
  7. 7.
    Sebastián D, and Baglio V, Materials 10 (2017) 1163.CrossRefGoogle Scholar
  8. 8.
    Minh N Q, and Takahashi T, Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam (1995). ISBN 9780080540764.Google Scholar
  9. 9.
    Singhal S C, and Kendall K, (Editors), High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, London (2003). ISBN 9780080508085.Google Scholar
  10. 10.
    Lorenzo M, Craig A J, and Islam M S, Chem Soc Rev 39 (2010) 4370.CrossRefGoogle Scholar
  11. 11.
    Chaudary C B, Maiti H S, and Subbarao E C, Solid Electrolytes and Their Applications, (ed) Subbarao E C, (1980), ISBN 978-1-4613-3081-3.Google Scholar
  12. 12.
    Basu R N, Recent Trends in Fuel Cell Science and Technology, Materials for Solid Oxide Fuel Cells, (ed) Basu S, Jointly published by Anamaya Publisher, New Delhi (India) and Springer, New York (2006), ISBN 978-0-387-68815-2.Google Scholar
  13. 13.
    Subbarao E C, and Maiti H S, Solid State Ionics 11 (1984) 317.CrossRefGoogle Scholar
  14. 14.
    Jacobson A J, Chem Mater 22 (2010) 660.CrossRefGoogle Scholar
  15. 15.
    Wachsman E D, and Lee K T, Science 334 (2011) 935.CrossRefGoogle Scholar
  16. 16.
    Fergus J W, J Power Sources 162 (2006) 30 .CrossRefGoogle Scholar
  17. 17.
    Dey T, Dutta A, Das Sharma A, and Basu R N, in Proceedings of 8th European SOFC Forum, Switzerland (2008), p B0514.Google Scholar
  18. 18.
    Basu R N, Das Sharma A, Dutta A, and Mukhopadhyay J, Int J Hydrogen Energy 33 (2008) 5748.CrossRefGoogle Scholar
  19. 19.
    Maschio S, Sbaizero O, Meriani S, and Bischoff E, J Mater Sci 27 (1992) 2734.CrossRefGoogle Scholar
  20. 20.
    Dey T, Das Sharma A, Dutta A, and Basu R N, J Alloys Comp 604 (2014) 151.CrossRefGoogle Scholar
  21. 21.
    Dutta A, Kumar A, and Basu R N, Electrochem Commun 11 (2009) 699.CrossRefGoogle Scholar
  22. 22.
    Ji Y, Kilner J A, and Carolan M F, Solid State Ionics 176 (2005) 937.CrossRefGoogle Scholar
  23. 23.
    Song H S, Kim W H, Hyun S H, Moon J, Kim J, and Lee H W, J Power Sources 167 (2007) 258.CrossRefGoogle Scholar
  24. 24.
    Zhang X, Liu L, Zhao Z, Tu B, Ou D, Cui D, Wei X, Chen X, and Cheng M, Nano Lett 15 (2015) 1703.CrossRefGoogle Scholar
  25. 25.
    Steele B C H, Solid State Ionics 1223 (1996) 86.Google Scholar
  26. 26.
    Hepeng D, Virkar A V, Liu M, and Liu F, Phys ChemChem Phys 15 (2013) 489.CrossRefGoogle Scholar
  27. 27.
    Mai A, Haanappel V A C, Uhlenbruck S, Tietz F, and Stover D, Solid State Ionics 176 (2005) 1341.CrossRefGoogle Scholar
  28. 28.
    Tietz F, Haanappel V A C, Mai A, Mertens J, and Stover D, J Power Sources 156 (2006) 20.CrossRefGoogle Scholar
  29. 29.
    Kim J H, Park Y M, and Kim H K, J Power Sources 196 (2011) 3544.CrossRefGoogle Scholar
  30. 30.
    Shao Z P, Yang W S, Cong Y, Dong H, Tong J H, and Xiong G X, J Membr Sci 172 (2000) 177.CrossRefGoogle Scholar
  31. 31.
    Shao Z, and Haile S M, Nature 431 (2004) 170.CrossRefGoogle Scholar
  32. 32.
    Shao Z P, Haile S M, Ahn J, Ronney P D, Zhan Z L, and Barnett S A, Nature 435 (2005) 795.CrossRefGoogle Scholar
  33. 33.
    Ralph J M, Schoeler A C, and Krumpelt M, J Mater Sci 36 (2001) 1161.CrossRefGoogle Scholar
  34. 34.
    Dutta A, Mukhopadhyay J, and Basu R N, J Eur Ceram Soc 29 (2009) 2003.CrossRefGoogle Scholar
  35. 35.
    Mukhopadhyay J, and Basu R N, Trans Electrochem Soc, The Electrochem Soc 57 (2013) 1945.Google Scholar
  36. 36.
    Mukhopadhyay J, Maiti H S, and Basu R N, Powder Technol 239 (2013) 506.CrossRefGoogle Scholar
  37. 37.
    Mukhopadhyay J, Maiti H S, and Basu R N, J Power Sources 232 (2013) 55.CrossRefGoogle Scholar
  38. 38.
    Mukhopadhyay J, and Basu R N, J Power Sources 252 (2014) 252.CrossRefGoogle Scholar
  39. 39.
    Banerjee Ghosh K, Mukhopadhyay J, Bysakh S, and Basu R N, Int J Hydrogen Energy 42 (2017) 2327.CrossRefGoogle Scholar
  40. 40.
    Mclntosh S, and Gorte R J, Chem Rev 104 (2004) 4845.CrossRefGoogle Scholar
  41. 41.
    Dees D W, Claar T D, Easler T E, Fee D C, and Mrazek F C, J Electrochem Soc 134 (1987) 2141.CrossRefGoogle Scholar
  42. 42.
    Matsuzaki Y, and Yasuda I, Solid State Ionics 132 (2000) 261.CrossRefGoogle Scholar
  43. 43.
    Mogensen M, and Kammer K, Annu Rev Mater Res 33 (2003) 321.CrossRefGoogle Scholar
  44. 44.
    Mogensen M, Lindegaard T, Hansen U R, and Mogensen G, J Electrochemi Soc 141, (1994) 2122.CrossRefGoogle Scholar
  45. 45.
    Sun C, Sun J, Xiao G L, Zhang H R, Qiu X P, Li H, and Chen L, J Phys Chem B 110 (2006) 13445.CrossRefGoogle Scholar
  46. 46.
    Xie Z, Xia C, Zhang M, Zhu W, and Wang H, J Power Sources 161 (2006) 1056.CrossRefGoogle Scholar
  47. 47.
    Ruiz-Morales J C, Canales-Vázquez J, Pena-Martlnez J, Lopez D M, and Nunez P, Electrochimica Acta 52 (2006) 278.CrossRefGoogle Scholar
  48. 48.
    Mukhopadhyay M, Mukhopadhyay J, Das Sharma A, and Basu R N, Mater Sci Eng B 163 (2009) 120.CrossRefGoogle Scholar
  49. 49.
    Mukhopadhyay J, Banerjee M, and Basu R N, J Power Sources 175 (2008) 749.CrossRefGoogle Scholar
  50. 50.
    Mukhopadhyay M, Mukhopadhyay J, and Basu R N, Trans Indian Ceram Soc 72 (2013) 145.CrossRefGoogle Scholar
  51. 51.
    Mukhopadhyay M, Mukhopadhyay J, Das Sharma A, and Basu R N, Int J Hydrogen Energy 37 (2012) 2524.CrossRefGoogle Scholar
  52. 52.
    Quartarone E, Angioni S, and Mustarelli P, Materials 10 (2017) 687.CrossRefGoogle Scholar
  53. 53.
    Zhang C H, and Shen P K, Chem Rev 112 (2012) 2780.CrossRefGoogle Scholar
  54. 54.
    Neburchilov V, Martin J, Wang H, and Zhang J, J Power Sources 169 (2007) 221.CrossRefGoogle Scholar
  55. 55.
    Ghosh S, and Basu R N, J Indian Inst Sci 96 (2016) 293.Google Scholar
  56. 56.
    Ghosh S, Bera S, Bysakh S, and Basu R N, Sustainable Energy Fuels 1 (2017) 1148.CrossRefGoogle Scholar
  57. 57.
    Sakong S, and Groß A, ACS Catal 6 (2016) 5575.CrossRefGoogle Scholar
  58. 58.
    Kim T, Kobayashi K, Takahashi M, and Nagai M, Chemistry Letters 34 (2005) 798.CrossRefGoogle Scholar
  59. 59.
    Ghosh S, Thandavarayan M, and Basu R N, Recent Advances in Nanostructured Electrocatalysts for Direct Alcohol Fuel Cells in Electrocatalysts for Low Temperature Fuel Cells-Fundamentals and Recent Trends; Wiley-VCH Verlag GmbH & Co. KGaA, Berlin (2017), p 347.CrossRefGoogle Scholar
  60. 60.
    Ghosh S, Bera S, Bysakh S, and Basu R N, ACS Appl Mater Interfaces 9 (2017) 33775.CrossRefGoogle Scholar
  61. 61.
    Ghosh S, Teillout A L, Floresyona D, Oliveira P D, Hagège A, and Remita H, Int J Hydrogen Energy 40 (2015) 4951.CrossRefGoogle Scholar
  62. 62.
    Ghosh S, Remita H, Kar P, Choudhury S, Sardar S, Beaunier P, Roy P S, Bhattacharya S K, and Pal S K, J Mater Chem A 3 (2015) 9517.CrossRefGoogle Scholar
  63. 63.
    Liu H, Song C, Zhang L, Zhang J, Wang H, and Wilkinson D P, J Power Sources 155 (2006) 95.CrossRefGoogle Scholar
  64. 64.
    Wang X, Li W, Chen Z, Waje M, and Yan Y, J Power Sources 15 (2006) 154.CrossRefGoogle Scholar
  65. 65.
    Suárez-Alcántara K, and Solorza-Feria O, J Power Sources 192 (2009) 165.CrossRefGoogle Scholar
  66. 66.
    Ghosh S, and Basu R N, Nanoscale 10 (2018) 11241.CrossRefGoogle Scholar
  67. 67.
    Ghosh S, Kar P, Bhandary N, Basu S, Maiyalagan T, Sardar S, and Pal S K, Int J Hydrogen Energy 42 (2017) 411.Google Scholar
  68. 68.
    Doherty R, Krafft P, Methivier J M, Casale C, Remita S, Louis H, and Thomas C, J Catal 287 (2012) 102.CrossRefGoogle Scholar
  69. 69.
    Chen A, and Ostrom C, Chem Rev 115 (2015) 11999.CrossRefGoogle Scholar
  70. 70.
    Surendran G, Ksar F, Ramos L, Keita B, Nadjo L, Prouzet E, Beaunier P, Dieudonné P, Audonnet F, and Remita H, J Phys Chem C 112 (2008) 10740.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Rajendra N. Basu
    • 1
    Email author
  • Jayanta Mukhopadhyay
    • 1
  • Srabanti Ghosh
    • 1
  • Abhijit Das Sharma
    • 1
  1. 1.Fuel Cell and Battery DivisionCSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations