Fabrication of 6061Al–5 wt%TiB2 In Situ Composite Strips by Mixed Salt Method and Twin-Roll Casting

  • Yang Zhao
  • Huagui HuangEmail author
  • Qingliang WangEmail author
  • Ce Ji
Technical Paper


6061Al–5 wt%TiB2 in situ composite strips were produced by a novel process. For comparison, the as-cast composites were prepared by the commonly used method and processed into strips. In the process, 6061Al–5 wt%TiB2 slurry was prepared by using the mixed salt method by making the molten Al react with stoichiometric mixed salts of KBF4 and K2TiF6. To fabricate the composite strips of as-cast state and cast-rolling state, the slurry of 50-min insulation was cast into a permanent mould and a twin-roll caster, respectively. Microstructures of both as-cast state and cast-rolling state were investigated by metallurgical microscope, X-ray diffraction, scanning electron microscope, and transmission electron microscope, and ultimate tensile tests were conducted to evaluate the mechanical properties thereof. The experimental results demonstrated that the twin-roll casting could significantly improve the microstructure and mechanical properties of the aluminium matrix composite strips. The microstructural improvement for the cast-rolling state was due to the quick cooling and deformation along the cast-rolling direction. The yield stress, the ultimate tensile strength, and the elongation of the cast-rolling state got improved by 67.9%, 31.9%, and 19.24%, respectively, compared with the as-cast state.


Particulate reinforced aluminium matrix composites 6061Al–5 wt%TiB2 in situ composite strips Twin-roll casting Elongated grain Particle crushing 



The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51474189), Natural Science Foundation of Hebei Province Distinguished Young Fund Project (Grant No. E2018203446) and Hebei Province Science Foundation for Youths (Grant No. E2017203104) for their kind financial support of this work.


  1. 1.
    Ramesh C S, Pramod S, Keshavamurthy R, Mater Sci Eng A 528 (2011) 4125.CrossRefGoogle Scholar
  2. 2.
    Zhao M, Wu G H, Dou Z Y, Mater Sci Eng A 374 (2004) 303.CrossRefGoogle Scholar
  3. 3.
    Gao Q, Wu S, LÜ S L, Duan X, An P, Mater Des 94 (2016) 79.CrossRefGoogle Scholar
  4. 4.
    Gao Q, Wu S S, Lü S L, Xiong X C, Du R, An P, J Alloys Compd 692 (2017) 1.CrossRefGoogle Scholar
  5. 5.
    Jiang R S, Wang W H, Song G D, Wang, J Manuf Process 23 (2016) 249.CrossRefGoogle Scholar
  6. 6.
    Dhanasekaran S, Sunilraj S, Ramya G, S. Ravishankar, Trans Indian Inst Met 69 (2016) 699.Google Scholar
  7. 7.
    Tee K L, Lu L, Lai M O, Compos Struct 47 (1999) 589.CrossRefGoogle Scholar
  8. 8.
    Huang H G, Chen P, Ji C, Mater Des 118 (2017) 233.CrossRefGoogle Scholar
  9. 9.
    Huang H G, Ji C, Yang Z Q, Yan M, J Manuf Process 30 (2017) 343.CrossRefGoogle Scholar
  10. 10.
    Ji C, Huang H G, Sun J N, Int J Heat Mass Transfer 120 (2018) 1305.CrossRefGoogle Scholar
  11. 11.
    Huang H G, Dong Y K, Yan M, DU F S, T Nonferr Metal Soc 27 (2017) 1019.CrossRefGoogle Scholar
  12. 12.
    Huang H, Lv Z, Song S, DU F S, The Minerals, Metals &Materials Society (2016) 391.Google Scholar
  13. 13.
    Yang X L, Huang Y, Barekar N S, Das S, Stone I C., Fan Z Y, Compos Part A-Appl S 90 (2016) 349.CrossRefGoogle Scholar
  14. 14.
    Haga T, Nakamura T, Kumai S, Watari H AIP Conf Proc 1769 (2016) 030003-1.Google Scholar
  15. 15.
    Lu L, Lai M O, Chen F L, Acta Mater 45 (1997) 4297.CrossRefGoogle Scholar
  16. 16.
    Emamy M, Mahta M, Rasizadeh J, Compos Sci Technol 66 (2006) 1063.CrossRefGoogle Scholar
  17. 17.
    Liu Z, Rakita M, Xu W, Wang X, Han Q, Chem Eng J 263 (2015) 317.Google Scholar
  18. 18.
    Wu S, Nakae H, Kanno T, You Y, J Compos Mater 36 (2001) 225.Google Scholar
  19. 19.
    Dan C Y, Chen Z, Ji G, Zhong S H, Wu Y, Brisset F, Wang H W, Ji V, Mater Des 130 (2017) 357.CrossRefGoogle Scholar
  20. 20.
    Chen Z, Sun G A, Wu Y, Mathon M H, Borbely A, Chen D, Ji G, Wang M L, Zhong S Y, Wang H W, Mater Des 116 (2017) 577.CrossRefGoogle Scholar
  21. 21.
    Wu S, Nakae H, J. Mater. Sci Lett 18 (1999) 321.CrossRefGoogle Scholar
  22. 22.
    Vatankhah B R, M Khojastehnezhad V, H Pourasl H, Rabiezadeh A, J Compos Mater 50 (2015) 1457.Google Scholar
  23. 23.
    Meenashisundaram G K, Seetharaman S, Gupta M, Mater Charact 94 (2014) 178.CrossRefGoogle Scholar
  24. 24.
    Park S S, Bae G, Kang D, You B, Kim N J, Scr Mater 61 (2009) 223.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.National Engineering Research Center for Equipment and Technology of Cold Strip RollingYanshan UniversityQinhuangdaoChina

Personalised recommendations