Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2381–2394 | Cite as

Effect of Zn Coating and Al–Zn Coating on Al/Steel Joints by Vacuum Electron Beam Welding

  • R. Z. Xu
  • Z. C. WeiEmail author
  • F. S. Li
Technical Paper


Two-mm-thick 6061 Al alloy plate to non-coated and coated Q235 steel plates, which were covered with Zn coating and Al–Zn coating, respectively, were successfully vacuum electron beam-welded, and a Fe–Al intermetallic compounds (IMCs) layer was formed at the interface. Compared with the Al/non-coated steel joint, Al/coated steel joints offered better lap shear tensile values, which were increased by around 37% and 29% from 1.83 to 2.51 kN (Al/Zn-coated steel joint), and to 2.36 kN (Al/Al–Zn-coated joint). The increase was mainly attributed to a longer effective bonding length through a better wettability and spreadability of liquid Al on steel surface. In all the cases, failure occurred at the Al/steel interface along the Fe2Al5 layer. It can be concluded that Zn element, consisting of coatings, has a positive influence on the improvement of wettability and fracture load value, and the main factors are acting as flux, changing atmosphere and reducing IMCs growth. On the other hand, Al–Zn coating, containing less Zn element, leads to a relatively worse wettability. However, Al-containing Zn coating can receive a productive result in reducing the vaporization of Zn coating in vacuum.


Vacuum electron beam welding Zn coating Al–Zn coating Al/steel joints Intermetallic compounds 



This study was supported by the National Natural Science Foundation of China under Grant No. 51601121.


  1. 1.
    Yuvaraj K P, Varthanan P A, and Darshan R, Trans Indian Inst Met 71 (2018) 2575.CrossRefGoogle Scholar
  2. 2.
    Mohammadpour M, Yazdian N, Wang H P, Carlson B, and Kovacevic R, J. Manuf. Process. 31 (2018) 20.CrossRefGoogle Scholar
  3. 3.
    Martinsen K, Hu S J, and Carlson B E, CIRP Ann. Manuf. Technol. 64 (2015) 679.CrossRefGoogle Scholar
  4. 4.
    Schneider J, and Radzilowski R, JOM 66 (2014) 2123.CrossRefGoogle Scholar
  5. 5.
    Rasaee S, Mirzaei A h, Almasi D, and Hayati S, Trans Indian Inst Met 71 (2018) 1553.CrossRefGoogle Scholar
  6. 6.
    Kalaiselvan K, Elango A, Nagarajan N M, and Kannan S, Trans Indian Inst Met 70 (2017) 1.CrossRefGoogle Scholar
  7. 7.
    Venugopal S, and Mahendran G, Trans Indian Inst Met 71 (2018) 2185.CrossRefGoogle Scholar
  8. 8.
    Murugan S P, Cheepu M, Nam D G, and Park Y D, Trans Indian Inst Met 70 (2017) 759.CrossRefGoogle Scholar
  9. 9.
    Mathieu A, Shabadi R, Deschamps A, Suery M, Matteï S, Grevey D, and Cicala E, Opt. Laser Technol. 39 (2007) 652.CrossRefGoogle Scholar
  10. 10.
    Lin S B, Song J L, Ma G C, and Yang C L, Front. Mater. Sci. China 3 (2009) 78.CrossRefGoogle Scholar
  11. 11.
    Taban E, Gould J E, and Lippold J C, Mater. Des. 31 (2010) 2305.CrossRefGoogle Scholar
  12. 12.
    Peyre P, Sierra G, Deschaux-Beaume F, Stuart D, and Fras G, Mater. Sci. Eng. A 444 (2007) 327.CrossRefGoogle Scholar
  13. 13.
    Lu J X, Yang W X, Wu S K, Zhao X D, and Xiao R S, Acta Metall. Sin. 27 (2014) 670.CrossRefGoogle Scholar
  14. 14.
    Movahedi M, Kokabi A H, Reihani S M S, and Najafi H, Sci. Technol. Weld. Join. 17 (2012) 162.CrossRefGoogle Scholar
  15. 15.
    Bozzi S, Helbert-Etter A L, Baudin T, Criqui B, and Kerbiguet J G, Mater. Sci. Eng. A 527 (2010) 4505.CrossRefGoogle Scholar
  16. 16.
    Padmanabhan R, Oliveira M C, and Menezes L F, Mater. Des. 29 (2008) 154.CrossRefGoogle Scholar
  17. 17.
    Lee C Y, Choi D H, Yeon Y M, and Jung S B, Sci. Technol. Weld. Join. 14 (2009) 216.CrossRefGoogle Scholar
  18. 18.
    Kreimeyer M, and Sepold G, in Proceedings of the International Congress on Applications of Lasers and Electro-Optics (ICA-LEO) (Laser Institute of America, Jacksonville, 2002).Google Scholar
  19. 19.
    Meco S, Ganguly S, Williams S, and McPherson N, J. Mater. Eng. Perform. 23 (2014) 3361.CrossRefGoogle Scholar
  20. 20.
    Tan C, Li L, Chen Y, and Guo W, Mater. Des. 49 (2013) 766–773.CrossRefGoogle Scholar
  21. 21.
    Xu R Z, Li H, Hou Y X, Wei Z C, Li F S, Cui S L, and Liu X H, Vacuum, 158 (2018) 31.CrossRefGoogle Scholar
  22. 22.
    Zhang Y F, Huang J H, Cheng Z, Ye Z, Chi H, Peng L, and Chen S H, Mater. Lett. 172 (2016) 146.CrossRefGoogle Scholar
  23. 23.
    Dinda S K, Warnett J M, Williams M A, Roy G G, and Srirangam P, Mater. Des. 96 (2016) 224.CrossRefGoogle Scholar
  24. 24.
    Kim J, and Kawamura Y, Scripta. Mater. 56 (2007) 709.CrossRefGoogle Scholar
  25. 25.
    Sarafan S, Wanjara P, Champliaud H, and Thibault D, Int. J. Adv. Manuf. Technol. 78 (2015) 1523.CrossRefGoogle Scholar
  26. 26.
    Coelho R S, Corpas M, Moreto J A, Jahn A, Standfuß J, Kaysser-Pyzalla A, and Pinto H, Mater. Sci. Eng. A 578 (2013) 125.CrossRefGoogle Scholar
  27. 27.
    Li L Q, Tan C W, Chen Y B, Guo W, and Mei C X, J. Mater. Sci. Technol. 213 (2013) 361.CrossRefGoogle Scholar
  28. 28.
    Miao Y G, Chen G Y, Zhang P, and Han D F, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 721.Google Scholar
  29. 29.
    Pouranvari M, and Abbasi M, J. Alloy. Compd. 749 (2018) 121.CrossRefGoogle Scholar
  30. 30.
    Song G, Wang H Y, Li T T, and Liu L M, J. Iron Steel Res. Int. 25 (2018) 221.CrossRefGoogle Scholar
  31. 31.
    Windmann M, Röttger A, Kügler H, and Theisen W, Int. J. Adv. Manuf. Technol. 87 (2016) 3149.CrossRefGoogle Scholar
  32. 32.
    Sun J H, Yan Q, Li Z G, and Huang j, Mater. Des. 90 (2016) 468.Google Scholar
  33. 33.
    Tan C W, Li L Q, Chen Y B, Mei C X, and Guo W, Int. J. Adv. Manuf. Technol. 68 (2013) 1179.CrossRefGoogle Scholar
  34. 34.
    Xu R Z, Ni D R, Yang Q, Liu C Z, and Ma Z Y, J. Mater. Sci. Technol. 32 (2016) 76.CrossRefGoogle Scholar
  35. 35.
    Gatzen M, Radel T, Thomy C, and Vollertsen F, Phys. Procedia 56 (2014) 730.CrossRefGoogle Scholar
  36. 36.
    Chen Y C, Komazaki T, Tsumura T, and Nakata K, Mater. Sci. Technol. 24 (2008) 33.CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Li F N, Guo G L, Wang G, and Wei H Y, Mater. Des. 109 (2016) 10.CrossRefGoogle Scholar
  38. 38.
    Ueda K, Ogura T, Nishiuchi S, Miyamoto K, Nanbu T, and Hirose A, Mater. Trans. 52 (2011) 967.CrossRefGoogle Scholar
  39. 39.
    Marya L M, Olson D L, and Edwards G R, Welding of magnesium alloys for transportation applications. In: Proceedings from joining of advanced and specialty materials, Missouri: ASM International, (2000).Google Scholar
  40. 40.
    Xu R Z, Ni D R, Yang Q, Xiao B L, Liu C Z, and Ma Z Y, Mater. Charact. 140 (2018) 197.CrossRefGoogle Scholar
  41. 41.
    Wang H Y, Feng B Q, Song G, and Liu L M, Mater. Manuf. Process. 33 (2018) 735.CrossRefGoogle Scholar
  42. 42.
    Pouranvari M, and Abbasi M, J. Alloy. Compd. 749 (2018) 121.CrossRefGoogle Scholar
  43. 43.
    Matysik P, Jozwiak S, and Czujko T, Mater. 8 (2015) 914.CrossRefGoogle Scholar
  44. 44.
    Tan C W, Zang C W, Xia H B, Zhao X Y, Zhang K P, Meng S H, Chen B, Song X G, and Li L Q, J. Manuf. Process. 34 (2018) 251.CrossRefGoogle Scholar
  45. 45.
    Yang J, Li Y L, Zhang H, Guo W, and Zhou Y, Mater. Sci. Eng. A 645 (2015) 323.CrossRefGoogle Scholar
  46. 46.
    Pouranvari M, Mater. Sci. Technol. 33 (2017) 1705.CrossRefGoogle Scholar
  47. 47.
    Springer H, Szczepaniak A, and Raabe D, Acta Mater. 96 (2015) 203.CrossRefGoogle Scholar
  48. 48.
    Arghavani M R, Movahedi M, and Kokabi A H, Mater. Des. 102 (2016) 106.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.College of Material Science and EngineeringShenyang Aerospace UniversityShenyangChina

Personalised recommendations