Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 12, pp 2997–3006 | Cite as

Investigation on the Hot Deformation Behavior of 316L Stainless Steel Using 3D Processing Map

  • Le-li Chen
  • Rui LuoEmail author
  • Yu-tong Yang
  • Ching-Tun Peng
  • Xiang Gui
  • Jie Zhang
  • Ke-yang Song
  • Pei Gao
  • Xiao-nong Cheng
Technical Paper
  • 44 Downloads

Abstract

Isothermal compression experiments have been adopted to systematically examine hot deformation behavior of 316L stainless steel on a simulator with 0.01–5 s−1 strain rate and 900–1100 °C temperature, and the results demonstrate that, in flow curves, both features of dynamic recrystallization (DRX) and dynamic recovery (DRV) can be observed. Besides, the constitutive model has been established, and the value of activation energy is obtained as 465.532 kJ mol−1. In addition, processing maps of different strains are also constructed. With microstructural observation, it can be found that the flow localization and mischcrystal structure occur while the hot deformation is performed on the instability domains (efficiency of power dissipation, \( \eta \), < 23%). The processing window is located at 0.01–0.056 s−1 strain rate and 1040–1100 °C temperature with the η higher than 35%. The optimal hot compression parameters are 1050 °C–0.01 s−1 with a peak efficiency of 38%, and the corresponding EBSD analysis shows a random distribution of DRX grains.

Keywords

316L stainless steel Hot deformation behavior Constitutive model Processing maps Dynamic recrystallization 

Notes

Acknowledgements

This research was sponsored by National Natural Science Foundation of China (No. 2012AA03A501), and Jiangsu Province Key R&D Project of China (No. BE2017127).

References

  1. 1.
    Ji H P, Microstructure Prediction Of 316LN Strainless Steel For Dynamic Recrystallization Based On Cellular Automata Method, Ph D Thesis, Yanshan University, China (2013).Google Scholar
  2. 2.
    Guo S L, Li D F, Pen H J, Guo Q M, and Hu J, J Nucl Mater410 (2011) 52.CrossRefGoogle Scholar
  3. 3.
    Aghaie K M, and Golarzi N, Mater Sci Eng A486 (2008) 641.CrossRefGoogle Scholar
  4. 4.
    Han J, Sun J P, Han Y, and Liu H, Acta Metall Sin-Engl30 (2017) 1080.CrossRefGoogle Scholar
  5. 5.
    Prasad Y, and Sasidhara S, Hot Working Guide: A Compendium of Processing Maps, ASM International, Ohio (1997).Google Scholar
  6. 6.
    Prasad Y V, J Mater Eng Perform12 (2003) 638.CrossRefGoogle Scholar
  7. 7.
    Anbuselvan S, and Ramanathan S, Mater Des31 (2010) 2319.CrossRefGoogle Scholar
  8. 8.
    Lin Y C, Li L T, Xia Y C, and Jiang Y Qi, J Alloys Compd550 (2013) 438.CrossRefGoogle Scholar
  9. 9.
    Sui F L, Xu L X, Chen L Q, and Liu X H, J Mater Process Technol211 (2011) 433.CrossRefGoogle Scholar
  10. 10.
    Han Y, Zou D N, Chen Z Y, Fan G W, and Zhang W, Mater Charact62 (2011) 198.CrossRefGoogle Scholar
  11. 11.
    Momeni A, and Dehghani K, Mater Sci Eng A527 (2010) 5467.CrossRefGoogle Scholar
  12. 12.
    Samantaray D, Mandal S, Kumar V, Albert S K, Bhaduri A K, and Jayakumar T, Mater Sci Eng A552 (2012) 236.CrossRefGoogle Scholar
  13. 13.
    Murty S V, Rao B N, and Kashyap B P, J Mater Process Technol166 (2005) 268.CrossRefGoogle Scholar
  14. 14.
    Ryan N, Mcqueen H, and Jonas J, Can Metall Q22 (1983) 369.CrossRefGoogle Scholar
  15. 15.
    Mataya M, Nilsson E, Brown E, and Krauss G, Metall Mater Trans A34 (2003) 3021.CrossRefGoogle Scholar
  16. 16.
    Guo B, Ji H, Liu X, Gao L, Dong R, and Jin M, J Mater Eng Perform21 (2011) 1455.CrossRefGoogle Scholar
  17. 17.
    Venugopal S, Mannan S L and Prasad Y V R K, Mater Sci Tech-Lond28 (1993) 715.Google Scholar
  18. 18.
    Zhang W H, Sun S H, Zhao D L, Wang B Z, Wang Z H, and Fu W T, Mater Des32 (2011) 4173.CrossRefGoogle Scholar
  19. 19.
    Guo B F, Ji H P, Liu X G, Gao L, Dong R M, Jin M, and Zhang Q H, J Mater Eng Perform21 (2012) 1461.Google Scholar
  20. 20.
    Wu H, Wen S P, Huang H, Gao K Y, Wu X L, Wang W, and Nie Z R, J Alloy Compd685 (2016) 869.CrossRefGoogle Scholar
  21. 21.
    Lin Y C, and Chen X M, Mater Des32 (2011) 1733.CrossRefGoogle Scholar
  22. 22.
    Peng X N, Guo H Z, Shi Z F, Qin C, Zhao Z L, and Yao Z K, Mater Sci Eng A605 (2014) 80.CrossRefGoogle Scholar
  23. 23.
    Sellars C M, Mc G, and Tegart W J, Int Metall Rev17 (1972) 1.CrossRefGoogle Scholar
  24. 24.
    Mirzadeh H, Cabrera J M, and Prado J M, A. Najafizadeh, Mater Sci Eng A528 (2011) 3876.Google Scholar
  25. 25.
    Ezatpour H R, Sajjadi S A, Sabzevar M H, and Ebrahimi G R, Mater Sci Eng A550 (2012) 152.CrossRefGoogle Scholar
  26. 26.
    Somani M, Muraleedharan K, Prasad Y, and Singh V, Mater Sci Eng A245 (1998) 88.CrossRefGoogle Scholar
  27. 27.
    Pan Q L, Li B, Wang Y, Zhang Y W, and Yin Z M, Mater Sci Eng A585 (2013) 371.CrossRefGoogle Scholar
  28. 28.
    Somani M, Rao E B, Birla N, Bhatia M, Singh V, and Prasad Y, Metall Trans A23 (1992) 2849.CrossRefGoogle Scholar
  29. 29.
    Luo R, The Design and Fabrication of a New Austenitic Heat-Resisting Alloy, and its Workability and Deformation Mechanism, Ph D Thesis, Jiangsu University, China (2016).Google Scholar
  30. 30.
    Xi T, Yang C G, Shahzad M B, Yang K, Mater Des87 (2015) 303.CrossRefGoogle Scholar
  31. 31.
    Zhang C, Zhang L W, Shen W F, Liu C R, Xia Y N, Li R Q, Mater Des90 (2016) 804.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Le-li Chen
    • 1
  • Rui Luo
    • 1
    Email author
  • Yu-tong Yang
    • 1
  • Ching-Tun Peng
    • 1
  • Xiang Gui
    • 1
  • Jie Zhang
    • 1
  • Ke-yang Song
    • 1
  • Pei Gao
    • 2
  • Xiao-nong Cheng
    • 1
  1. 1.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Jiangsu Yinhuan Precision Steel Tube Co., LtdYixingChina

Personalised recommendations