Wear Behavior of Hot Forged NiTi Parts Produced by PM Technique

  • Sinan AksözEmail author
Technical Paper


Pre-alloyed NiTi powders were pressed at 400 °C, sintered at 1250 °C for 2 h and then cooled down at the rate of 5 °C/min to room temperature inside oxygen-free furnace. Later these sintered parts were forged at ~ 1050 °C [(± 25 °C) (Forged.1: 15% and Forged.2: 30%)]. Wear behaviors of the un-forged and hot forged parts were investigated. Wear tests were carried out via a pin-on-disk wear testing device according to ASTM G132-96 standard. The wear tests were performed for various sliding distances (200 m, 400 m and 600 m) at the speed of 1.2 m/s and under different loads of 5 N, 10 N and 15 N. Vickers macro-hardness values were measured at HV2. The samples were analyzed via SEM, EDS and MAP to determine the microstructure. Wear losses, wear rates and friction coefficients were measured in detail. The results showed that the best values in terms of wear and friction coefficient were obtained for 30% hot forged sample which had a hardness value of 612 HV and a density of 5.94 g/cm3.


Hot forged NiTi SMA Tribology Friction Wear 



The author is thankful to Dr. İsmail Ovali for his contributions to study. This study was partly supported by the Pamukkale University Scientific Research Coordination Unit (Project code: 2018HZDP014).


  1. 1.
    Imbeni V, Martini C, Prandstraller D, Poli G, Trepanier C, and Duerig T W, Wear 254 (2003) 1299.CrossRefGoogle Scholar
  2. 2.
    Aksöz S, and Bostan B, in International Multidisciplinary Microscopy Congress, Springer, Cham (2014), p 129.Google Scholar
  3. 3.
    Frotscher M, Kröger A, Somsen Ch, Neuking K, Steegmüller R, Schüßler A, and Eggeler G, Pract Metallogr 44 (2007) 208.CrossRefGoogle Scholar
  4. 4.
    Qian L M, Zhou Z R, and Sun Q P, Wear 259 (2005) 309.CrossRefGoogle Scholar
  5. 5.
    Aksöz S, Altinişik G, E E Elverişli, and Bostan B, J Polytech 21 (2018) 437.Google Scholar
  6. 6.
    Liang Y N, Li S Z, Jin Y B, Jin W, and Li S, Wear 198 (1996) 236.CrossRefGoogle Scholar
  7. 7.
    Li D Y, Scr Mater 34 (1996) 195.CrossRefGoogle Scholar
  8. 8.
    Clayton P, Wear 162–164 (1993) 202.CrossRefGoogle Scholar
  9. 9.
    Gandhi M V, and Thompson B S, Smart Materials and Structures, Chapman & Hall, New York (1992).Google Scholar
  10. 10.
    Gialanella S, Ischia G, and Straffelini G, J Mater Sci 43 (2008) 1701.CrossRefGoogle Scholar
  11. 11.
    Abedini M, Ghasemi H M, and Ahmadabadi M N, Mater Des 30 (2009) 4493.CrossRefGoogle Scholar
  12. 12.
    Mauro Dolce M, and Cardone D, Int J Mech Sci 43 (2001) 2657.CrossRefGoogle Scholar
  13. 13.
    Yan L, and Liu Y, Shap Mem Superelast 1 (2015) 58.CrossRefGoogle Scholar
  14. 14.
    Frenzel J, George E P, Dlouhy A, Somsen Ch, Wagner M F-X, and Eggeler G, Acta Mater 58 (2010) 3444.CrossRefGoogle Scholar
  15. 15.
    Aksöz S, Altınışık G, Elverişli E E, and Bostan B, GU J Sci C 6 (2018) 570.Google Scholar
  16. 16.
    Yeom J-T, Kim J H, Hong J-K, Kim S W, Park C-H, Nam T H, and Lee K-Y, Mater Res Bull 58 (2014) 234.CrossRefGoogle Scholar
  17. 17.
    Aksöz S, Arab J Sci Eng 42 (2017) 2573.CrossRefGoogle Scholar
  18. 18.
    Whitney M, Corbin S F, and Gorbet R B, Acta Mater 56 (2008) 559.CrossRefGoogle Scholar
  19. 19.
    Morakabati M, Aboutalebi M, Kheirandish Sh, Taheri A K, and Abbasi S M, Intermetallics 19 (2011) 1399.CrossRefGoogle Scholar
  20. 20.
    Hornbuckle B C, Yu X X, Noebe R D, Martens R, Weaver M L, and Thompson G B, Mater Sci Eng A 639 (2015) 336.CrossRefGoogle Scholar
  21. 21.
    Furukawa M, Horita Z, and Langdon T G, Adv Eng Mater 3 (2001) 121.CrossRefGoogle Scholar
  22. 22.
    Motemani Y, Nili-Ahmadabadi M, Tan M J, Bornapour M, and Rayagan Sh, J Alloys Compd 469 (2009) 164.CrossRefGoogle Scholar
  23. 23.
    Ovalı İ, Esen C, Albayrak S, and Karakoç H, MATEC Web Conf 167 (2018) 02010.CrossRefGoogle Scholar
  24. 24.
    Arciniegas M, Casals J, Manero J M, Peña J, and Gil F J, J Alloys Compd 460 (2008) 213.CrossRefGoogle Scholar
  25. 25.
    Stanford M K, Thomas F, and DellaCorte C, Processing issues for preliminary melts of the intermetallic compound 60-NiTiNOL, NASA/TM-2012-216044 (2012).Google Scholar
  26. 26.
    Stanford M K, Hardness and Microstructure of Binary and Ternary Nitinol Compounds. NASA/TM-2016-218946 (2016).Google Scholar
  27. 27.
    DellaCorte C, and Wozniak W A, Design and Manufacturing Considerations for Shockproof and Corrosion-Immune Superelastic Nickel-Titanium Bearings for a Space Station Application, NASA/TM-2012-216015 (2012).Google Scholar
  28. 28.
    Della Corte C, Stanford M K, and Jett T R, Tribol Lett 57 (2015) 1.CrossRefGoogle Scholar
  29. 29.
    Khamei A A, and Dehghani K, Mater Chem Phys 123 (2010) 269.CrossRefGoogle Scholar
  30. 30.
    Ovali I, Karakoç H, and Çinici H, JAMME 79 (2016) 19.Google Scholar
  31. 31.
    Özyürek D, Kalyon A, Yıldırım M, Tuncay T, and Çiftçi I, Mater Des 63 (2014) 270.CrossRefGoogle Scholar
  32. 32.
    Palavar O, Özyürek D, and Kalyon A, Mater Des 82 (2015) 164.CrossRefGoogle Scholar
  33. 33.
    Wu S, Liu X, Yeung K W K, Xu Z S, Chung C Y, and Chu P K, JMEPEG 21 (2012) 2622.CrossRefGoogle Scholar
  34. 34.
    Aksöz S, Bican O, Çalın R, and Bostan B, Proc IMechE J J Eng Tribol 228 (2014) 312.CrossRefGoogle Scholar
  35. 35.
    Neupane R, and Farhat Z, Wear 301 (2013) 682.CrossRefGoogle Scholar
  36. 36.
    Zhang C, and Farhat Z N, Wear 267 (2009) 394.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Metallurgy and Materials Engineering, Technology FacultyPamukkale UniversityDenizliTurkey

Personalised recommendations