Analysis of Heat Treatment Response for Cryorolled AA2219 Alloy

  • B. Blessto
  • K. SivaprasadEmail author
  • V. Muthupandi
  • P. Senthil
  • M. Arumugam
Technical Paper


AA2219 sheets used in space applications need a combination of properties as strength and ductility for its enhanced usage. For this purpose, the heat treatment parameters were optimized to bring out the better strength in these alloys. AA2219 sheets were rolled at a cryogenic liquid nitrogen temperature at − 196 °C and room temperature for 50% and 75% reduction. DSC analysis was done to relate the effect of the precipitation kinetics to the strength of the material. The rolled samples were subjected to annealing at different temperatures for shorter periods. The annealing parameter was optimized by using mean results from the full factorial design based on the microhardness values obtained. Using the optimized annealing parameter, artificial ageing was performed at temperatures ranging from 75 to 125 °C for 30 h. The uni-directional rolled samples showed maximum strength after ageing at 125 °C for 24 h and cross-rolled sample at 100 °C for 18 h. A predictive model using regression and ANFIS were designed to determine the responses for the various input parameter settings for both the annealing and ageing and was validated. Analysis of variance was used to determine the significance of the ageing process parameters proving reduction percentage and ageing time having more effect on the heat treatment process.


AA2219 Cryorolling Differential scanning calorimetry (DSC) ANFIS Short annealing Ageing 



This work was supported by the ISRO-RESPOND project. The authors wish to thank ISRO-RESPOND for their financial support and their approval for publishing this research (ISRO Sanction No: ISRO/RES/3/721/16-17).


  1. 1.
    Shanmugasundaram T, Murty B S and Subramanya Sarma V, Scr Mater 54 (2006) 2013.CrossRefGoogle Scholar
  2. 2.
    Gopala Krishna K, Sivaprasad K, Venkateswarlu K and Hari Kumar K C, Mater Sci Eng A 535 (2012) 129.Google Scholar
  3. 3.
    Panigrahi S K, Jayaganthan R, Pancholi V and Gupta M A, Mater Chem Phys 122 (2010) 188.CrossRefGoogle Scholar
  4. 4.
    Feyissa F, Urnendu Das P, Ravi Kumar D and Ravi Sankar B, Des Res Conf 20 (2014) 1.Google Scholar
  5. 5.
    Panigrahi S K and Jayaganthan R, J Alloys Compd 509 (2011) 9609.CrossRefGoogle Scholar
  6. 6.
    Panigrahi S K, Devanand D and Jayaganthan R, Trans Indian Inst Met 61 (2008) 159.CrossRefGoogle Scholar
  7. 7.
    Kumar V and Kumar, Mater Sci Eng A 691 (2017) 211.Google Scholar
  8. 8.
    Panigrahi S K and Jayaganthan R, Metall Mater Trans A 41 (2010) 2675.CrossRefGoogle Scholar
  9. 9.
    Dhal A, Panigrahi S K and Shunmugam M S, J Alloys Compd 649 (2015) 229.CrossRefGoogle Scholar
  10. 10.
    Krymskiy S, Sitdikov O, Avtokratova E, Murashkin M and Markushev M, Rev Adv Mater Sci 31 (2012) 145.Google Scholar
  11. 11.
    Krishna K, Singh N, Karodi V and Kumar H, J Mater Eng Perform 20 (2011) 1569.Google Scholar
  12. 12.
    Kumar K, Grover S and Aggarwal, J Ind Eng Comput 2 (2011) 479.Google Scholar
  13. 13.
    Bagherian Azhiri R, Teimouri R, Ghasemi Baboly M and Leseman Z, Int J Adv Manuf Technol 71 (2014) 279.CrossRefGoogle Scholar
  14. 14.
    Bozkurt Y, Mater Des 35 (2012) 440.CrossRefGoogle Scholar
  15. 15.
    Bilici M K, Yükler A İ and Kurtulmuş M, Mater Des 32 (2011) 4074.CrossRefGoogle Scholar
  16. 16.
    Sahoo P, Mater Des 30 (2009) 1341.CrossRefGoogle Scholar
  17. 17.
    Sahoo P and Pal S K, Tribol Lett 28 (2007) 191.CrossRefGoogle Scholar
  18. 18.
    Zhao D, Wang Y, Liang D and Zhang P, Mater Des 110 (2016) 676.CrossRefGoogle Scholar
  19. 19.
    Prakash O, Talat M, Hasan S H and Pandey R K, Bioresour Technol 99 (2008) 7565.CrossRefGoogle Scholar
  20. 20.
    Kadaganchi R, Gankidi M R and Gokhale H, Def Technol 11 (2015) 209.CrossRefGoogle Scholar
  21. 21.
    Ravikumar K, Pakshirajan K, Swaminathan T and Balu K, Chem Eng J 105 (2005) 131.Google Scholar
  22. 22.
    Pan C M, Fan Y T, Xing Y, Hou H W and Zhang M L, Bioresour Technol 99 (2008) 3146.Google Scholar
  23. 23.
    Dewan M W, Huggett D J, Warren Liao T, Wahab M A and Okeil A M, Mater Des 92 (2016) 288.CrossRefGoogle Scholar
  24. 24.
    Pérez J A, González M and Dopico D, Neural Comput Appl 19 (2010) 85.CrossRefGoogle Scholar
  25. 25.
    Panigrahi S K and Jayaganthan R, Mater Des 32 (2011) 3150.CrossRefGoogle Scholar
  26. 26.
    Sarkar A, Saravanan K, Nayan N, Murty S V S N, Narayanan P R, Venkitakrishnan P V and Mukhopadhyay J, Metall Mater Trans A 48 (2017) 321.CrossRefGoogle Scholar
  27. 27.
    Taylor A S, Weiss M, Hilditch T, Hodgson P D and Stanford N, Mater Sci Forum 765 (2013) 434.CrossRefGoogle Scholar
  28. 28.
    Palanisamy D and Senthil P, Mater Manuf Process 32 (2017) 654.CrossRefGoogle Scholar
  29. 29.
    Gill S S, Singh R, Singh J and Singh H, Expert Syst Appl 39 (2012) 4171.CrossRefGoogle Scholar
  30. 30.
    Aminah Z S, Noraini S A S M, Zuhailawati H and Anasyida A S, IOP Conf Ser Mater Sci Eng 114 (2016) 012127.CrossRefGoogle Scholar
  31. 31.
    Kapoor G, Huang Y, Sarma V S, Langdon T G and Gubicza J, Mater Sci Eng A 688 (2017) 92.Google Scholar
  32. 32.
    Satish D R, Feyissa F and Kumar D R, Mater Manuf Process 32 (2017) 1345.CrossRefGoogle Scholar
  33. 33.
    Dommeti S, Feyissa F and Ravi Kumar D 6 (2018)123.Google Scholar
  34. 34.
    Rajasekaran N R and Sampath V, J Miner Mater Charact Eng 10 (2011) 527.CrossRefGoogle Scholar
  35. 35.
    Elgallad E M, Zhang Z and Chen X G, Mater Sci Eng A 625 (2015) 213.Google Scholar
  36. 36.
    Wangkasem P, Effect of Cryo-Rolling and Aging Processes on the Hardness, Electrical Conductivity and Microstructure of Aluminium Alloy ICEAS 127.Google Scholar
  37. 37.
    Panigrahi S K, Jayaganthan R and Chawla V, Mater Lett 62 (2008) 2626.CrossRefGoogle Scholar
  38. 38.
    Immanuel R J and Panigrahi S K, Mater Sci Eng A 712 (2018) 747.Google Scholar
  39. 39.
    Babu S, Elangovan K, Balasubramanian V and Balasubramanian M, Met Mater Int 15 (2009) 21.CrossRefGoogle Scholar
  40. 40.
    Pai T Y, Wan T J, Hsu S T, Chang T C, Tsai Y P, Lin C Y, Su H C and Yu L F, Comput Chem Eng 33 (2009) 1272.Google Scholar
  41. 41.
    Srinivasarao B and Lefebvre W, Effect of cryorolling on the microstructure and mechanical properties of AA2198 alloy, Proceedings of the 12th International Conference on Aluminium Alloys (2010), p 1961.Google Scholar
  42. 42.
    Xu Z, Liu M, Jia Z and Roven H J, J Alloys Compd 695 (2017) 827.CrossRefGoogle Scholar
  43. 43.
    Sejzu M, Govindaraj R, and Prabhakaran R, Int J Sci Eng Res 7 (2016) 225.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Advanced Materials Processing Laboratory, Department of Metallurgical and Materials EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia
  2. 2.Department of Production EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia
  3. 3.Liquid Propulsion Systems CentreThiruvananthapuramIndia

Personalised recommendations