Microstructure and Properties of Casting Fe–Cr–B Alloy After Quenching Treatment

  • Tian Ye
  • Fu HanguangEmail author
  • Lin Jian
  • Guo Xingye
  • Lei Yongping
Technical Paper


The as-cast microstructure of Fe–4Cr–B alloy has been systematically investigated, which contains 1 wt%B, 4 wt%Cr, 0.35 wt%C, 0.8 wt%Si and 0.8 wt%Mn. The investigation was carried out by optical microscopy (OM), scanning electron microscopy (EDS/SEM), X-ray diffraction (XRD), hardness tester and wear tester, and the quenching temperature effect on its microstructure and mechanical property was studied. The results showed that ferrite, pearlite, martensite and borocarbides were the main composition of the solidification microstructure of casting Fe–4Cr–B alloy. After water quenching at 950–1150 °C, the matrix transformed to martensite, and the secondary borocarbides M23 (C, B)6 precipitated from the matrix, and then the continuous distribution of M2 (B, C) (M = Fe, Cr, Mn) among dendrites began to break. As the water quenching temperature increased, the phenomenon of disconnection became more clearly. When the water quenching temperature was 1100 °C, the network borocarbides fractured and formed an isolated distribution. The hardness of the alloy increased first and then decreased. At water quenching temperature of 1100 °C, the hardness reached the maximum of 62.8 HRC. The abrasive resistance and hardness of casting Fe–4Cr–B alloy changed at the same trend.


Abrasive resistance Hardness Microstructure Quenching temperature Casting Fe–4Cr–B alloy 



The authors would like to thank the financial support for this work from National Natural Science Foundation of China under grant (51775006) and Scientific Plan Item of Beijing Education Committee under Grant (009000546318529).


  1. 1.
    Gou J, Lu P, Wang Y, Liu S, and Zou Z, Appl Surf Sci 360 (2016) 849.CrossRefGoogle Scholar
  2. 2.
    Nilsson A, Kirkhorn L, Andersson M, and Stahl J E, Wear 271 (2011) 1280.CrossRefGoogle Scholar
  3. 3.
    Lin C H, Komeya K, Meguro T, Tatami J, Abe Y, and Komatsu M, J Ceram Soc Jpn 111 (2003) 452.CrossRefGoogle Scholar
  4. 4.
    Wiengmoon A, Pearce J T H, and Chairuangsri T, Mater Chem Phys 125 (2011) 739.CrossRefGoogle Scholar
  5. 5.
    Zhi X H, Liu J Z, Xing J D, and Ma S Q, Mater Sci Eng A 603 (2014) 98.CrossRefGoogle Scholar
  6. 6.
    Albertin E, Beneduce F, Matsumoto M, and Teixeira I, Wear 271 (2011) 1813.CrossRefGoogle Scholar
  7. 7.
    Zhang H, Fu H, Jiang Y, Guo H, Lei Y, Zhou R, and Cen Q, Mater Sci Eng Technol 42 (2011) 765.Google Scholar
  8. 8.
    Christodoulou P, and Calos N, Mater Sci Eng, A301 (2001) 103.CrossRefGoogle Scholar
  9. 9.
    Zhang J J, Gao Y M, Xing J D, Ma S Q, Yi D W, and Yan J B, Tribol Lett 44 (2011) 31.CrossRefGoogle Scholar
  10. 10.
    Yi D W, Xing J D, Ma S Q, Fu H G, Li Y F, Chen W, Yan J B, Zhang J J, and Zhang R R, Tribol Lett 45 (2012) 427.CrossRefGoogle Scholar
  11. 11.
    Yi Y L, Xing J D, Wan M J, Yu L L, Lu Y F, Jian Y X, Mater Sci Eng A 708 (2017) 274.CrossRefGoogle Scholar
  12. 12.
    Yüksel N, and Şahin S, Mater Design 58 (2014) 491.CrossRefGoogle Scholar
  13. 13.
    Cen Q, Zhang H, and Fu H, J Iron Steel Res Int 21 (2014) 532.CrossRefGoogle Scholar
  14. 14.
    Ju J, Fu H G, Fu D M, Wei S Z, Sang P, Wu Z W, Tang K Z, and Lei Y P, Ironmak Steelmak 45 (2018) 176.CrossRefGoogle Scholar
  15. 15.
    Hao S, Modern Cast Iron, Metallurgical Industry Press, Beijing (2009).Google Scholar
  16. 16.
    Gu J, Fu H, Lei Y, and Ma S, Mater Test 57 (2015) 22.CrossRefGoogle Scholar
  17. 17.
    Ma S Q, Xing J D, Fu H G, Gao Y M, and Zhang J J, Acta Mater 60 (2012) 831.CrossRefGoogle Scholar
  18. 18.
    Wang S L, Cui L, He D Y, Zhou Z, and Jiang J M, Hot Work Technol 1 (2016) 30.Google Scholar
  19. 19.
    Xiao-Le C, Jiang J, Yin-Hu Q, Li C, and Han-Guang F, Trans Indian Inst Met 71 (2018) 2261.CrossRefGoogle Scholar
  20. 20.
    Du Z Z, Li Y, Fu H G, Liu F, and Zhang H, Trans Mater Heat Treat 35 (2014) 50.Google Scholar
  21. 21.
    Hanguang F, Xuding S, Yongping L, Zhiqiang J, Jun Y, Jinhua W, and Jiandong X, Metals Mater Int 15 (2009) 345.CrossRefGoogle Scholar
  22. 22.
    Fu H, Liu X, Yang Y, and Qu Y H Trans Indian Inst Met 71 (2018) 2423.CrossRefGoogle Scholar
  23. 23.
    Buchely M F, Gutierrez J C, León L M, and Toro A, Wear 259 (2005) 52.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeijing University of TechnologyBeijingPeople’s Republic of China

Personalised recommendations