Advertisement

Effect of Hybrid Machining Techniques on Machining Performance of In-House Developed Mg-PMMC

  • Navneet Khanna
  • N. M. Suri
  • Chetan AgrawalEmail author
  • Prassan Shah
  • Grzegorz M. Krolczyk
Technical Paper
  • 62 Downloads

Abstract

High demand of lightweight material makes magnesium alloys and composites more suitable to aerospace and automotive industries. However, poor corrosion resistance and fatigue resistance make its applications limited. Due to inherent capability of machining processes, the surface characteristics of the component can be improved. Many articles reported improvement in machinability of different difficult-to-machine materials while using ultrasonic-assisted turning (UAT) process and cryogenic-assisted turning individually. In this paper, the newly developed cryogenic–ultrasonic-assisted turning (CUAT) technique is used for the machining of in-house developed magnesium AZ91/SiC particulate metal matrix composite (PMMC). In this study, surface roughness and chip breakability index are measured under different machining methods, i.e. conventional turning (CT), UAT and CUAT. The full factorial method is used to design the experiments. A regression model of surface roughness is developed for CT and UAT processes and optimized using Jaya algorithm. Our results provide evidence of improvement in surface finish for UAT of magnesium AZ91/SiC PMMC in comparison with CT. An improvement up to 36.50% and 15% has been observed in surface roughness and chip breakability index, respectively, with CUAT process as compared to UAT process at optimized cutting parameters of the UAT process.

Keywords

Ultrasonic-assisted turning Hybrid machining Magnesium AZ91/SiC PMMC Jaya algorithm Cryogenic machining 

List of Symbols

PMMC

Particulate metal matrix composite

UAT

Ultrasonic-assisted turning

CT

Conventional turning

CAT

Cryogenic-assisted turning

CUAT

Cryogenic–ultrasonic-assisted turning

Cin

Chip breakability index

N

Spindle speed in revolutions per minute (rpm)

f

Feed in mm per revolution

F

Frequency in kHz

Ra

Average surface roughness (μm)

R

Cutting tool nose radius (mm)

Notes

Acknowledgements

The authors would like to thank the SERB-DST, Government of India, for the financial support given under the Project (ECR/2016/000735), titled “Design and Development of Energy Efficient Cryogenic Machining Facility for Heat Resistant Alloys and Carbon Fiber Composites”.

References

  1. 1.
    Watarai H, Sci Technol Trends 18 (2004) 84.Google Scholar
  2. 2.
    Pusavec F, Krajnik P, and Kopac J, J Clean Prod 18 (2010) 184.Google Scholar
  3. 3.
    Witte F, Acta Biomater 6 (2010) 1680.CrossRefGoogle Scholar
  4. 4.
    Amini S, Nategh M J, and Soleimanimehr H, Proc Inst Mech Eng Part B J Eng Manuf 223 (2009) 641.Google Scholar
  5. 5.
    Pu Z, Outeiro J C, Batista A C, Dillon O W, Puleo D A, and Jawahir I S, Procedia Eng 19 (2011) 282.CrossRefGoogle Scholar
  6. 6.
    Wang H, Estrin Y, Fu H, Song G, and Zúberová Z, Adv Eng Mater 9 (2007) 972.CrossRefGoogle Scholar
  7. 7.
    Brehl D E and Dow T A, Precis Eng 32 (2008) 172.CrossRefGoogle Scholar
  8. 8.
    Kulekci M K, Int J Adv Manuf Technol 39 (2008) 851.CrossRefGoogle Scholar
  9. 9.
    Xu W X and Zhang L C, Adv Manuf 3 (2015) 173.CrossRefGoogle Scholar
  10. 10.
    Kale A and Khanna N, Procedia Manuf 7 (2017) 191.CrossRefGoogle Scholar
  11. 11.
    Shokrani A, Dhokia V, and Newman S T, Proc Inst Mech Eng Part B J Eng Manuf 232 (2018) 1690.CrossRefGoogle Scholar
  12. 12.
    Babitsky V I, Mitrofanov A V, and Silberschmidt V V, Ultrasonics 42 (2004) 81.CrossRefGoogle Scholar
  13. 13.
    Razfar M R, Sarvi P, and Zarchi M M A, Proc Inst Mech Eng Part B J Eng Manuf 225 (2011) 1615.CrossRefGoogle Scholar
  14. 14.
    Pu Z, Outeiro J C, Batista A C, Dillon O W, Puleo D A, and Jawahir I S, Int J Mach Tools Manuf 56 (2012) 17.CrossRefGoogle Scholar
  15. 15.
    Outeiro J C, Rossi F, Fromentin G, Poulachon G, Germain G, and Batista A C, Procedia CIRP 8 (2013) 487.CrossRefGoogle Scholar
  16. 16.
    Danish M, Ginta T L, Habib K, Carou D, Rani A M A, and Saha B B, Int J Adv Manuf Technol 91 (2017) 2855.CrossRefGoogle Scholar
  17. 17.
    Shen N, Ding H, Pu Z, Jawahir I S, and Jia T, J Manuf Sci Eng 139 (2017) 061012.CrossRefGoogle Scholar
  18. 18.
    Di Iorio E, Bertolini R, Bruschi S, and Ghiotti A, Procedia CIRP 77 (2018) 324.CrossRefGoogle Scholar
  19. 19.
    Abootorabi Zarchi M M, Razfar M R, and Abdullah A, Proc Inst Mech Eng Part B J Eng Manuf 226 (2012) 1185.CrossRefGoogle Scholar
  20. 20.
    Khanna N, and Davim J P, Meas. J Int Meas Confed 61 (2015) 280.CrossRefGoogle Scholar
  21. 21.
    Fang X D, Fei J and Jawahir I S, Int J Mach Tools Manufact 36 (1995) 1093.CrossRefGoogle Scholar
  22. 22.
    Pusavec F, Deshpande A, Yang S, M’Saoubic R, Kopac J, and Jawahir I S, J Clean Prod 87 (2015) 941.CrossRefGoogle Scholar
  23. 23.
    Hong J J, and W C Yeh, Adv Mech Eng 10 (2018) 1.Google Scholar
  24. 24.
    Rao R V, More K C, Oclon P, and Taler J, Appl Therm Eng 103 (2016) 572.CrossRefGoogle Scholar
  25. 25.
    Rao R V, Int J Ind Eng Comput 7 (2016) 19.Google Scholar
  26. 26.
    Bhattacharyya D, Allen M N, and Mander S J, Mater Manuf Process 8 (1993) 631.CrossRefGoogle Scholar
  27. 27.
    Iturbe A, Hormaetxe E, Garay A and Arrazola P J, Procedia CIRP 45 (2016) 67.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringInstitute of Infrastructure Technology Research and Management (IITRAM)AhmedabadIndia
  2. 2.Department of Production and Industrial EngineeringPunjab Engineering CollegeChandigarhIndia
  3. 3.Faculty of Mechanical EngineeringOpole University of TechnologyOpolePoland

Personalised recommendations