Advertisement

Correlation of Tensile Properties and Fracture Toughness with Microstructural Features for Al–Li 8090 Alloy Processed by Cryorolling and Post-rolled Annealing

  • Saurabh Gairola
  • Amit JoshiEmail author
  • Brijesh Gangil
  • Pankaj Rawat
  • Raviraj Verma
Technical Paper
  • 26 Downloads

Abstract

The influence of cryorolling and post-deformation annealing on the tensile and fracture behaviour of aluminium–lithium (Al 8090) alloy is reported in the present investigation. The solution-treated (ST) alloy was cryorolled (CR) up to the true strain of 2.3 to achieve ultrafine-grained (UFG) microstructure and then annealed at different temperature ranging from 100 to 350 °C. CR samples showed a significant increase in tensile strength (~ 373 MPa), hardness (~ 120 HV), and fracture toughness [KQ (21.9 MPa \( \surd m \)), Kee [27.9 MPa \( \surd m \)), J integral (21.8 kJ/m2)], while huge drop in ductility of CR alloy is observed as compared to coarser grain ST alloy. After annealing in the temperature ranging from 100 to 350 °C, the significant changes in the tensile and fracture behaviour of bulk UFG Al 8090 alloy were noticed. The tensile strength and fracture toughness were gradually improved up to the temperature 150 °C and observed to be maximum (~ 561 MPa) at 150 °C, while beyond this temperature, a significant drop in these properties was observed. The improved tensile and fracture properties of cryorolled followed by annealed alloy at 150 °C could be attributed to the precipitation of S′ (Al2CuMg) and \( \delta \) (Al3Li) phase as observed from XRD and TEM studies.

Keywords

Ultrafine grains TEM Linear elastic fracture toughness Elastic–plastic fracture toughness 

Notes

References

  1. 1.
    M S H, Sharma S, and Kumar B, Rev Sev Plast Deform 6 (2017) 66.Google Scholar
  2. 2.
    Hussain M, Nageswara P, Singh D, Jayaganthan R, and Singh S, Procedia Eng 75 (2014) 129.  https://doi.org/10.1016/j.proeng.2013.11.028.CrossRefGoogle Scholar
  3. 3.
    Kapoor R, Sarkar A, Yogi R, Shekhawat S K, Samajdar I, and Chakravartty J K, Mater Sci Eng A 560 (2013) 404.  https://doi.org/10.1016/j.msea.2012.09.085.CrossRefGoogle Scholar
  4. 4.
    Chatterjee A, Sharma G, Sarkar A, Singh J B, and Chakravartty J K, Mater Sci Eng A 556 (2012) 653.  https://doi.org/10.1016/j.msea.2012.07.043.CrossRefGoogle Scholar
  5. 5.
    Chen Y C, Huang Y Y, Chang C P, and Kao P W, Acta Mater 51 (2003) 2005.  https://doi.org/10.1016/s1359-6454(02)00607-9.CrossRefGoogle Scholar
  6. 6.
    Alhamidi A, and Horita Z, Grain Refinement and High Strain Rate Superplasticity in Alumunium 2024 Alloy Processed by High-Pressure Torsion, Elsevier (2015).  https://doi.org/10.1016/j.msea.2014.11.009.
  7. 7.
    Horita Z, and Langdon T G, Mater Sci Eng A 410–411 (2005).  https://doi.org/10.1016/j.msea.2005.08.133.CrossRefGoogle Scholar
  8. 8.
    Tsuji N, Saito Y, Lee S H, and Minamino Y, Adv Eng Mater 5 (2003) 338.  https://doi.org/10.1002/adem.200310077.CrossRefGoogle Scholar
  9. 9.
    Rajinikanth V, Arora G, Narasaiah N, and Venkateswarlu K, Mater Lett 62 (2008) 301.  https://doi.org/10.1016/j.matlet.2007.05.014.
  10. 10.
    Rao P N, Singh D, Jayaganthan R, Rao P N, Singh D, and Jayaganthan R, Mater Sci Technol 0836 (2013).  https://doi.org/10.1179/1743284712y.0000000041.
  11. 11.
    Joshi A, Yogeshak K, and Jayaganthan R, Mater Charact (2017) 253–271.  https://doi.org/10.1016/j.matchar.2017.02.003.
  12. 12.
    Kumar N, Rao P N, Jayaganthan R, and Brokmeier H, Mater Chem Phys 165 (2015) 177.  https://doi.org/10.1016/j.matchemphys.2015.09.014.CrossRefGoogle Scholar
  13. 13.
    Singh D, Rao P N, and Jayaganthan R, Int J Miner Metall Mater, 20 (2013) 759–769.  https://doi.org/10.1007/s12613-013-0794-4.
  14. 14.
    Rangaraju N, Raghuram T, Krishna B V, Rao K P, and Venugopal P, Mater Sci Eng A (2005).  https://doi.org/10.1016/j.msea.2005.03.026.
  15. 15.
    Krishna K S V B R, Chandra Sekhar K, Tejas R, Naga Krishna N, Sivaprasad K, Narayanasamy R, and Venkateswarlu K, Mater Des 67 (2015) 107.  https://doi.org/10.1016/j.matdes.2014.11.022.
  16. 16.
    Panigrahi S K, and Jayaganthan R, Mater Sci Eng A 480 (2008) 299.  https://doi.org/10.1016/j.msea.2007.07.024.CrossRefGoogle Scholar
  17. 17.
    Joshi A, Nikhil K K Y, Jayaganthan K R, and Jayaganthan R, Metallogr Microstruct Anal 5 (2016) 540.  https://doi.org/10.1007/s13632-016-0313-x.CrossRefGoogle Scholar
  18. 18.
    Prasad N E, Gokhale A A, and Wanhill R J H, Butterworth Heinemann. (2014) 1289.  https://doi.org/10.1201/9780203912607.
  19. 19.
    Llorca Isern N, Gonzalez P A, Luis Pérez C J, and Laborde I, Mater Sci Forum 503–504 (2006) 871. doi:10.4028/www.scientific.net/MSF.503-504.871.
  20. 20.
    Prasad N E, Gokhale A A, and Rao P R, Sadhana 28 (2003) 209.  https://doi.org/10.1007/bf02717134.CrossRefGoogle Scholar
  21. 21.
    Gregson P J, and Flower H M, Acta Metall 33 (1985) 527.  https://doi.org/10.1016/0001-6160(85)90095-1.CrossRefGoogle Scholar
  22. 22.
    Liu S M, and Wang Z G, Scr Mater 48 (2003) 1421.  https://doi.org/10.1016/s1359-6462(03)00107-6.CrossRefGoogle Scholar
  23. 23.
    Maria Rodrigues E, Matias A, Barbosa L, and Mg O P, Mater Res, 8 (2005) 287.  https://doi.org/10.1590/s1516-14392005000300011.Google Scholar
  24. 24.
    Nikhil K K Y, and Amit K, Metallogr Microstruct Anal 5 (2016) 251.  https://doi.org/10.1007/s13632-016-0282-0.CrossRefGoogle Scholar
  25. 25.
    Boukos N, Rocofyllou E, and Papastaikoudis C, Mater Sci Eng A 256 (1998) 280.  https://doi.org/10.1016/s0921-5093(98)00794-1.CrossRefGoogle Scholar
  26. 26.
    Ghosh K S, Das K, and Chatterjee U K, Mater Sci Technol 20 (2004) 825.  https://doi.org/10.1179/026708304225019650.CrossRefGoogle Scholar
  27. 27.
    Ghosh K S, Das K, and Chatterjee U K, J Appl Electrochem 36 (2006) 1057.  https://doi.org/10.1007/s10800-006-9166-3.CrossRefGoogle Scholar
  28. 28.
    Dhal A, Panigrahi S K, and Shunmugam M S, Mater Sci Eng A 645 (2015) 383.  https://doi.org/10.1016/j.msea.2015.08.020.
  29. 29.
    Nageswara P, and Jayaganthan R, Mater Des 39 (2012) 226.  https://doi.org/10.1016/j.matdes.2012.02.010.CrossRefGoogle Scholar
  30. 30.
    Wang Y M, Chen M W, Zhou F H, and Ma E, Nature. 419 (2002) 912.  https://doi.org/10.1038/nature01133.CrossRefGoogle Scholar
  31. 31.
    Shanmugasundaram T, Heilmaier M, Murty B S, and Sarma V S, Mater Sci Eng A 527 (2010) 7821.  https://doi.org/10.1016/j.msea.2010.08.070.CrossRefGoogle Scholar
  32. 32.
    Hohenwarter A, and Pippan R, Mater Sci Eng A 540 (2012) 89.  https://doi.org/10.1016/j.msea.2012.01.089.CrossRefGoogle Scholar
  33. 33.
    Hohenwarter A, and Pippan R, Scr Mater 64 (2011) 982.  https://doi.org/10.1016/j.scriptamat.2011.02.007.CrossRefGoogle Scholar
  34. 34.
    Hahn G T, and Rosenfield A R, Metall Trans A 6 (1975) 653.  https://doi.org/10.1007/bf02672285.CrossRefGoogle Scholar
  35. 35.
    B. Farahmand, and M. Aliabadi, Fracture Mechanics of Metals, Composites, Welds, and Bolted Joints: Application of LEFM, EPFM, and FMDM Theory (2002).  https://doi.org/10.1115/1.1483354.
  36. 36.
    Joshi A, Kumar N, Yogesha K K, Jayaganthan R, and Nath S K, J Mater Eng Perform 25 (2016) 3031.  https://doi.org/10.1007/s11665-016-2126-0.
  37. 37.
    Dieter G E, Bacon D, and Wilkes G L, Metallurgy SI Metric Edition Adapted by, (n.d.T/AL).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Saurabh Gairola
    • 1
  • Amit Joshi
    • 1
    Email author
  • Brijesh Gangil
    • 2
  • Pankaj Rawat
    • 1
  • Raviraj Verma
    • 3
  1. 1.Department of Mechanical EngineeringGovind Ballabh Pant Institute of Engineering and TechnologyPauriIndia
  2. 2.Department of Mechanical EngineeringHemwati Nandan Bahuguna Garhwal UniversitySrinagarIndia
  3. 3.Department of Metallurgical and Materials EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations