Advertisement

The Effect of Powder Loading and Binder System on the Mechanical, Rheological and Microstructural Properties of 4605 Powder in MIM Process

  • Vahid Momeni
  • Ali Askari
  • Mohammad Hossein AlaeiEmail author
  • Amir Hossein Rahimi
  • Khanali Nekouee
  • Hadi Zangi
Technical Paper
  • 22 Downloads

Abstract

In this study, the effect of powder loading of 4605 low-alloy steel has been investigated on the rheological and mechanical properties of the final part manufactured by metal injection molding process. For this, two binder systems consisting of different percentages of paraffin wax (PW), polypropylene (PP), carnauba wax (CW) and stearic acid (SA) have been compounded with 55, 60 and 65 vol% of the powder. The manufactured samples were then tested for tensile, hardness, density and rheological properties. The results showed that with the increase in the powder loading, the tensile strength, hardness and density increase. It was observed that the higher percentage of the backbone polymer and surfactant resulted in higher mechanical properties of the final part. The optimum was made using the feedstock consisting of 55 wt% PW, 25 wt% PP, 15 wt% CW and 5 wt% SA along with 65 vol% of powder loading.

Keywords

Metal injection molding Powder loading 4605 low-alloy steel Mechanical properties Rheological properties 

Notes

References

  1. 1.
    German R M, Powder Injection Molding, Metal Powder Industries Federation, Princeton, New Jersey (1990), p 521.Google Scholar
  2. 2.
    German R, and Hens K F, Ceram. Bull 70 (1991) 1294.Google Scholar
  3. 3.
    Supati R, Loh N H, and Khor K A, Tor S B, Mater Lett 46 (2006) 109.CrossRefGoogle Scholar
  4. 4.
    Westcot E J, Andrandall C B, and German M, Powder Metall 46 (2003) 61.CrossRefGoogle Scholar
  5. 5.
    Liu L, Loh N H, Tay B Y, Tor S B, Murakoshi Y, and Maeda R, Mater Charact 54 (2005) 230.CrossRefGoogle Scholar
  6. 6.
    Li Y, Li L, and Khalil K A, J Mater Process Technol 183 (2007) 432.CrossRefGoogle Scholar
  7. 7.
    Sotomayor M E, Várez A, and Levenfeld, B Powder Technol 200 (2010) 30.CrossRefGoogle Scholar
  8. 8.
    Sotomayor M E, Levenfeld B, and Várez A, Mater Sci Eng A 528 (2011) 3480.CrossRefGoogle Scholar
  9. 9.
    Kong X, Barriere T, and Gelin J C, J Mater Process Technol 212 (2012) 2173.CrossRefGoogle Scholar
  10. 10.
    Yang G, Li J, Song W, and Meng J, Adv Mater Res 753–755 (2013) 167.Google Scholar
  11. 11.
    Ibrahim R, Azmirruddin M, Jabir M, Ismail M R, Muhamad M, Awang R, Muhamad S, Park K H, Bangi B B, and Lumpur K, Am J Appl Sci 7 (2010) 811.CrossRefGoogle Scholar
  12. 12.
    Thavanayagam G, Pickering K L, Swan J E, and Cao P, Powder Technol 269 (2015) 227.CrossRefGoogle Scholar
  13. 13.
    Mutsuddy B C, and Ford R G, Ceramic Injection Molding, Chapman and Hall, United Kingdom (1995), p 368.Google Scholar
  14. 14.
    Liu F, and Chou K, Ceram Int 26 (2000) 159.CrossRefGoogle Scholar
  15. 15.
    García H, J Eur Ceram Soc 32 (2012) 4063.CrossRefGoogle Scholar
  16. 16.
    Aggarwal G, Park S J, and Smid I, Int J Refract Met Hard Mater 24 (2006) 253.CrossRefGoogle Scholar
  17. 17.
    Miura H, Honda T, and German R M, J Jpn Soc Powder Powder Metall 38 (1991) 767.CrossRefGoogle Scholar
  18. 18.
    Miura H, Honda T, and German R M, J Jpn Soc Powder Powder Metall 39 (1992) 254.CrossRefGoogle Scholar
  19. 19.
    Miura H, Urakami K, Ando S, and Honda T, J Jpn Soc Powder Powder Metall 40 (1993) 388.CrossRefGoogle Scholar
  20. 20.
    Baba T, and Miura H, J Jpn Soc Powder Powder Metall 44 (1997) 1014.CrossRefGoogle Scholar
  21. 21.
    Miura H, and Matsuda M, Mater Trans 43 (2002) 343.CrossRefGoogle Scholar
  22. 22.
    Lin K-H, Mater Des 32 (2011) 1273.CrossRefGoogle Scholar
  23. 23.
    Pogodina N V, Cerclé C, Avérous L, Thomann R, Bouquey M, and Muller R, Annu Eur Rheol Conf 47 (2008) 543.Google Scholar
  24. 24.
    Matsuda M, and Miura H, Met Mater Int 9 (2003) 537.CrossRefGoogle Scholar
  25. 25.
    Özgün Ö, Gulsoy H O, Yilmaz R, and Findik F, J Alloys Compd 576 (2013) 140.CrossRefGoogle Scholar
  26. 26.
    Wright M, Hughes L J, and Gressel S H, J Mater Eng Perform 3 (1994) 300.CrossRefGoogle Scholar
  27. 27.
    Bigg D M, and Barry R G, Annu Tech ConfANTEC Conf. Proc 1 (1998) 997.Google Scholar
  28. 28.
    Gerling R, Aust E, Limberg W, Pfuff M, and Schimansky F P, Mater Sci Eng A 423 (2006) 262.CrossRefGoogle Scholar
  29. 29.
    German R M, and Bose A, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation (1997), p 413.Google Scholar
  30. 30.
    Lal A, German R M, Acta Mater 47 (1999) 4615.CrossRefGoogle Scholar
  31. 31.
    Li D, Hou H, Liang L, and Lee K, Int J Adv Manuf Technol 49 (2010) 105.CrossRefGoogle Scholar
  32. 32.
    Fan J, Han Y, Liu T, Cheng H, Gao Y, and Tian J, Trans Nonferrous Met Soc China 23 (2003) 1709.CrossRefGoogle Scholar
  33. 33.
    Yi-min L, Xiang-quan L, Feng-hu L, Jian-ling W E, Trans Nonferrous Met Soc China 17 (2007) 1.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Vahid Momeni
    • 1
  • Ali Askari
    • 1
  • Mohammad Hossein Alaei
    • 2
    Email author
  • Amir Hossein Rahimi
    • 1
  • Khanali Nekouee
    • 2
  • Hadi Zangi
    • 3
  1. 1.Mechanical DepartmentMalek Ashtar University of Technology (MUT)TehranIran
  2. 2.Center for Composite MaterialsMalek Ashtar University of Technology (MUT)TehranIran
  3. 3.Department of Materials EngineeringMalek Ashtar University of Technology (MUT)TehranIran

Personalised recommendations