Synthesis of Nanoalumina/Graphene Oxide Hybrid for Improvement Tribological Property of Aluminum

  • Hossein Salehi VaziriEmail author
  • Ali Shokuhfar
Technical Paper


In this research, an efficient, facile and low-cost chemical method was the developed for preparation of Al2O3/graphene oxide (GO) hybrid nanoparticle (Al2O3Nps/GO), through in situ synthesis of Al2O3Nps in the presence of GO. Al2O3Nps/GO hybrid nanoparticles added to aluminum powder and nanocomposites were fabricated by powder metallurgy processing and consolidated via the spark plasma sintering. Structure, morphology and composition of the hybrid particle were investigated by means of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectra and thermogravimetric analysis. The results confirmed successful incorporation of alumina over GO surface and formation of pure and homogenized γ-Al2O3Nps/GO hybrid particle. Physical and tribological properties of hybrid nanocomposite were investigated by using density, hardness and wear analyses. High relative density was obtained for Al 1 wt% γ-Al2O3Nps/GO. Tribological property was studied by pin-on-disk tribometer and showed that the friction coefficient significantly decreased with increasing γ-Al2O3Nps/GO content.


Hybrid particle Alumina nanoparticles Graphene oxide Aluminum matrix 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, and Geim AK, Science 320 (2008) 356.CrossRefGoogle Scholar
  2. 2.
    Tong V C, Chen L M, Allen M J, Wassail J K, Nelson K R, Kaner B, and Yang Y, Nano Lett 9 (2009) 1949.CrossRefGoogle Scholar
  3. 3.
    Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T, and Honma I, Nano Lett, 8 (2008) 2277.CrossRefGoogle Scholar
  4. 4.
    Kovtyukhova, N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, and Gorchinskiy A D, Chem Mater 11 (1999) 771.CrossRefGoogle Scholar
  5. 5.
    Kwon H, Mondal J, AlOgab K, Sammelselg V, Takamichi M, Kawaski A, and Leparoux M, J Alloys Compd 698 (2017) 807.CrossRefGoogle Scholar
  6. 6.
    Ju J M, Wang G, and Sim K H, J Alloys Compd 704 (2017) 585.CrossRefGoogle Scholar
  7. 7.
    Rashad M, Pan F, Yu Z, Asif M, Lin H, and Pan R, Proc Natl Sci Mater 25 (2015) 460.CrossRefGoogle Scholar
  8. 8.
    Chen F, Gupta N, Rohatgi P K, and Behera R K, JOM 70 (2018) 837.CrossRefGoogle Scholar
  9. 9.
    Ding J, Tsuzuki T, and McCormick P G, J Am Ceram Soc 79 (1996) 2956.CrossRefGoogle Scholar
  10. 10.
    Uyeda R, Prog Mater Sci 35 (1991) 1.CrossRefGoogle Scholar
  11. 11.
    Kurşun A, Bayraktar E, and Enginsoy H M, Compos Part B 90 (2016) 302.CrossRefGoogle Scholar
  12. 12.
    Das D K, Mishra P C, Singh S, and Thakur R K, IJMME 1 (2014) 1.Google Scholar
  13. 13.
    Li Y N, Zhang W Z, Cao Y F, and Zhang T E, Adv Mater Res 853 (2014) 68.CrossRefGoogle Scholar
  14. 14.
    Chidambaram A, and Bhole SD, Scr Mater 35 (1996) 373.CrossRefGoogle Scholar
  15. 15.
    Pavese M, and Biamino S, J Porous Mater 16 (2009) 59.CrossRefGoogle Scholar
  16. 16.
    Zainy M, Huang N M, Vijay Kumar S, Lim H N, Chia C H, and Harrison I, Mater Lett 89 (2012) 180.CrossRefGoogle Scholar
  17. 17.
    Marlinda A R, Huang N M, Muhamad M R, An’amt M N, Chang B Y S, Yusoff N, Harrison I, Lim H N, Chia C H, and Vijay Kumar S, Mater Lett 80 (2012) 9.CrossRefGoogle Scholar
  18. 18.
    Mo Z, Liu P, Guo R, Deng Z, Zhao Y, and Sun Y, Mater Lett 68 (2012) 416.CrossRefGoogle Scholar
  19. 19.
    Xu C, Wang X, Zhu J W, Yang X J, and Lu L, J Mater Chem 18 (2008) 5625.CrossRefGoogle Scholar
  20. 20.
    Maria Jastrzębska A, Roman Olszyna A, Jureczko J, and Kunicki A, Int J Appl Ceram Technol 12 (2015) 522.CrossRefGoogle Scholar
  21. 21.
    Kim H J, Lee S M, Oh Y S, Yang Y H, Lim Y S, Yoon D H, Lee C, Kim J Y, and Ruoff R S, Sci Rep 4 (2014) 5176.CrossRefGoogle Scholar
  22. 22.
    Hummers W S, and Offeman R E, J Am Chem Soc 80 (1958) 1339.CrossRefGoogle Scholar
  23. 23.
    Nethravathi C, and Rajamathi M, Carbon 46 (2008) 1994.CrossRefGoogle Scholar
  24. 24.
    Bora B, Aomoa N, Bordoloi R K, Srivastava D N, Bhuyan H, Das A K, and Akati M, Curr Appl Phys 12 (2012) 880.CrossRefGoogle Scholar
  25. 25.
    Chang B Y S, Huang N M, An’amt M N, Marlinda A R, Norazriena Y, Muhamad M R, Harrison I, Lim H N, and Chia C H, Int J Nanomed 7 (2012) 3379.Google Scholar
  26. 26.
    Ferrari A C, and Robertson J, Phys Rev B 61 (2000) 14095.CrossRefGoogle Scholar
  27. 27.
    Tuinstra F, and Koenig J L, J Chem Phys 53 (1970) 1126.CrossRefGoogle Scholar
  28. 28.
    Lim H N, Huang N M, Lim S S, Harrison I, and Chia C H, Int J Nanomed 6 (2011) 1817.CrossRefGoogle Scholar
  29. 29.
    Rengifo S, Zhang C, Harimkar S, Boesl B, and Agarwal A, Tribol Lett 65 (2017) 76.CrossRefGoogle Scholar
  30. 30.
    Jafari M, Enayati M H, Abbasi M H, and Karimzadeh F, J Mater Des 31 (2010) 663.CrossRefGoogle Scholar
  31. 31.
    Shakeri H R, and Wang Z, Metall Mater Trans A 33 (2002) 1699.CrossRefGoogle Scholar
  32. 32.
    Ferguson J, Sheykh-Jaberi F, Kim C S, Rohatgi P K, and Cho K, Mater Sci Eng A 558 (2012) 193.CrossRefGoogle Scholar
  33. 33.
    Kang Y C, and Chan S L I, Mater Chem Phys 85 (2004) 438.CrossRefGoogle Scholar
  34. 34.
    Taya M, and Arsenault R J, Metal Matrix Composites: Thermomechanical Behavior. Pergamon Press, New York, USA (1989).Google Scholar
  35. 35.
    Deuis R L, Subramanian C, and Yellup J M, Wear 201 (1996) 132.CrossRefGoogle Scholar
  36. 36.
    Kim S W, Lee U J, Han S W, Kim D K, and Ogi K, Compos Part B Eng 34 (2003) 737.CrossRefGoogle Scholar
  37. 37.
    Wozniak J, Kostecki M, Cygan T, Buczek M, and Olszyna A, Compos B 111 (2017) 1.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Advanced Materials and Nanotechnology Research Laboratory, Faculty of Materials Science and EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations