Preparation and Property of Gradient Ni–W–ZrO2 Composite Coating on LY12 Alloy

  • Xiao-jia Liu
  • Wan-chang SunEmail author
  • Ya-ru Dong
  • Min Ma
  • Ya-gang Zhang
  • Fei Yang
  • Yu-yao Ruan
Technical Paper


Combining a technology of a composite coating and a new development idea of a functionally gradient deposits, a kind of novel gradient nickel–tungsten–zirconium dioxide (Ni–W–ZrO2) composite coating was successfully prepared on LY12 alloy substrate by using concentration of sodium tungstate varying as 20 g/L, 50 g/L, 80 g/L, 120 g/L, 160 g/L, and 200 g/L in the bath. The results showed that the W content of as-deposited gradient Ni–W–ZrO2 composite coating was gradually increased to 50.50 wt% along the coating growth direction, its structure transitioned from amorphous to crystal line, and the tungsten nickel (Ni4W) phase was precipitated after heat treatment at 400 °C for 1 h. In addition, the wear and oxidation resistance, and anti-corrosion of gradient Ni–W–ZrO2 composite coating were generally enhanced with increase in heat treatment temperature. Moreover, the wear resistance, oxidation and corrosion resistance of gradient Ni–W–ZrO2 composite coating achieved optimal values after heat treatment at 400 °C for 1 h for the gradient structure and high W content.


LY12 alloy Electrodeposition Gradient composite coating Wear resistance High-temperature oxidation resistance Anti-corrosion 



The work was supported by the National Natural Science Foundation of China (50172023) and the Shaanxi Industrial Science and Technology Research (2014K08-09) and the National College Students Innovation Training Program (201810704006).


  1. 1.
    Chelladurai S J S, Arthanari R, Selvarajan R, Athanarsamy S, Arumugam S, Veerakumar G, Trans Indian Inst Met 71 (2018) 9.Google Scholar
  2. 2.
    Xu X, Lu Y, Zheng F, Chen B, J Mater Eng Perform 24 (2015) 11.Google Scholar
  3. 3.
    Guo F B, Zhu B H, Jin L B, Wang G J, Yan H W, Li Z H, Zhang Y A, Xiong B Q, Rare Met 7 (2017).Google Scholar
  4. 4.
    Gopal Krishna U B, Virupaxi Auradi B, Vasudeva, Kori S A, Trans Indian Inst Met 1 (2018).Google Scholar
  5. 5.
    Ogawa F, Yamamoto S and Masuda C, Engl Lett (2018).Google Scholar
  6. 6.
    Wang F, Inoue A, Han Y, Zhu S L, Kong F L, Zanaeva E, Liu G D, Shalaan E, Al-Marzouki F, Obaid A, J Alloy Compd 711 (2017).Google Scholar
  7. 7.
    Tong D G, Wang D, Chu W, Sun J H, Wu P, Electrochim Acta 55 (2010) 7.CrossRefGoogle Scholar
  8. 8.
    Liu H, Guo R X, Zong Y, He B Q, Liu Z, Trans Nonferrous Met Soc China 20 (2010) 6.Google Scholar
  9. 9.
    Cheng Y, Chen H, Yang J, Zhu Z C, Ciesc J 68 (2014) 1.Google Scholar
  10. 10.
    Cao G M, Yang F Z, Huang L, Niu Z, Shukai X U, Zhou S, T I Met Finish 79 (2001) 2.Google Scholar
  11. 11.
    Han B L, Lu X C, Chinese Sci Bull 54 (2009) 24.Google Scholar
  12. 12.
    Benea L, Başa S B, Dănăilă E, Caron N, Raquet O, Ponthiaux P, Celis J P, Materials and Design 65 (2015).Google Scholar
  13. 13.
    Hristovski K D, Westerhoff P K, Crittenden J C, Olson L W, Environ Sci Technol 42 (2015) 10.Google Scholar
  14. 14.
    Bostani B, Ahmadi N P, Yazdani S, Arghavanian R, Prot Met Phys Chem+ 54 (2018) 2.Google Scholar
  15. 15.
    Uludağ M, Çetin R, Dişpinar D, Tiryakioglu M, Inter Metalcast 12 (2018).Google Scholar
  16. 16.
    Abdollahi A, Ehsani N, Valefi Z, Mater Chem Phys 182 (2016).Google Scholar
  17. 17.
    Gáliková Z, Chovancová M, Danielik V, Chem Pap 60 (2006) 5.CrossRefGoogle Scholar
  18. 18.
    Singha S, Sribalajia M, Wasekarb N P, Joshi S, Sundararajan G, Singh R, Keshri A K, Appl Surf Sci 364 (2016) 264.CrossRefGoogle Scholar
  19. 19.
    Wasekar N P, Latha S M, Ramakrishna M, Rao D S, Sundararajan G, Mater Des 112 (2016).Google Scholar
  20. 20.
    Asiq Rahman O S, Wasekar N P, Sundararajan G, Keshri A K, Mater Charact 116 (2016).Google Scholar
  21. 21.
    Sribalaji M, Rahman O A, Kumar P A, Babu K S, Wasekar N P, Sundararajan G, Keshri A K, Metall and Mat Trans A 48 (2017).Google Scholar
  22. 22.
    Chen H, Ren X R, Zhang X H, Li J H, Mater Sci Forum 849 (2016).Google Scholar
  23. 23.
    Kabi S, Raeissi K, Saatchi A, J Appl Electrochem 39 (2009) 8.CrossRefGoogle Scholar
  24. 24.
    Haseebc A S M A, Bade K, Microsyst Technol 14 (2008).Google Scholar
  25. 25.
    Younes O, Gileadi E, Electrochem Solid ST 3 (2000).Google Scholar
  26. 26.
    Wang H L, Liu L Y, Dou Y, Zhang W Z, Jiang W F, Appl Surf Sci 286 (2013).Google Scholar
  27. 27.
    Xin W, Jiang G, Yu H, Zhi L, Dong W, Jie L, J Mater Chem 22 (2012) 37.CrossRefGoogle Scholar
  28. 28.
    Liu H, Viejo F, Guo R X, Glenday S, Liu Z, Surf Coat Tech 204 (2010) 9.Google Scholar
  29. 29.
    Petkov V, Mater Today 11 (2008) 11.CrossRefGoogle Scholar
  30. 30.
    Pisarek M, Janik-Czachor M, Donten M, Surf Coat Tech 202 (2008) 10.CrossRefGoogle Scholar
  31. 31.
    Haseeb A S M A, Albers U, Bade K, Wear 264 (2008) 1.CrossRefGoogle Scholar
  32. 32.
    Lee D B, Ko J H, Kwon S C, Mat Sci Eng A 380 (2004) 1.CrossRefGoogle Scholar
  33. 33.
    Eraslan S, Ürgen M, Surf Coat Tech 265 (2015).Google Scholar
  34. 34.
    Liu G, Yang L, Wang L, Wang S, Chongyang L, Wang J, Surf Coat Tech 204 (2010) 9.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Xiao-jia Liu
    • 1
  • Wan-chang Sun
    • 1
    Email author
  • Ya-ru Dong
    • 1
  • Min Ma
    • 1
  • Ya-gang Zhang
    • 1
  • Fei Yang
    • 1
  • Yu-yao Ruan
    • 1
  1. 1.College of Materials Science and EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China

Personalised recommendations