Advertisement

Advanced High-Temperature Structural Materials for Aerospace and Power Sectors: A Critical Review

  • P. Sengupta
  • I. MannaEmail author
Technical Paper

Abstract

Advanced high-temperature structural materials are expected to play an important role in realizing the aspirations related to the next-generation aerospace propulsion devices, thermal protection system of reusable launch vehicles and thermal/nuclear power reactors. Despite considerable amount of research conducted for developing new and more efficient high-temperature structural materials, the advancement is inadequate and warrants continued efforts to address several unresolved issues concerning synthesis and processing of new materials, related characterization and testing to evaluate and ensure desired performance, durability, reproducibility and reliability in simulated experiments and real-life condition and finally, upscaling the operation for large-scale commercially viable production. In this article, an attempt has been made to review the latest status and trend in developing high-temperature structural materials for aerospace and thermal/nuclear sectors and highlight the challenges associated with development and processing of such advanced structural materials.

Keywords

High-temperature structural material Thermal protection system Strength Microstructure Ceramic matrix composite Creep Oxidation Fatigue Sintering 

Notes

Acknowledgements

Pradyut Sengupta acknowledges Director, CSIR–Institute of Minerals and Materials Technology, Bhubaneswar for valuable comments and insightful suggestions. PS also acknowledges the financial support from CSIR–IMMT through institutional project OLP–76. Indranil Manna gratefully acknowledges partial financial support from ISRO funded project ‘OCM’ and DST funded project ‘DGL’ at IIT Kharagpur and his personal support from Institute Chair Professorship (IIT Kharagpur) and JC Bose Fellowship (DST). Both the authors wish to record their deepest respect and gratitude to Professor E C Subbarao for his enormous and landmark contributions to the field of Materials Science and Engineering, in particular, to Advanced Ceramics.

References

  1. 1.
    Ellerby D, Venkatapathy E, Stackpoole M, and Chinnapongse R, Woven Thermal Protection System Based Heat-Shield for Extreme Entry Environments Technology (HEEET) (2013).Google Scholar
  2. 2.
    Barcena J, Florez S, Perez B, Pinaud G, Bouilly JM, Fischer W P, Montbrun A, Descomps M, Zuber C, Rotaermel W, Hald I H, Portela P, Mergia K, Triantou K, Vekinis G, Stefan A, Ban C, Ionescu G, Bernard D, Leroy V, Massuti B, and Herdrich G H, Novel Hybrid Ablative/Ceramic Development for Re-entry in Planetary Atmospheric Thermal Protection: Interfacial Adhesive Selection and Test Verification Plan. AIAA Aviat 2014-19th AIAA Int Sp Planes Hypersonic Syst Technol Conf (2014), p 1.Google Scholar
  3. 3.
    Dicarlo J A, in Ceram Matrix Compos Mater Model Technol, (eds) Bansal N P, and Lamon J, Wiley, Hoboken (2014), p 217.Google Scholar
  4. 4.
    Padture N P, Nat Mater 15 (2016) 804.CrossRefGoogle Scholar
  5. 5.
    Yvon P, and Carré F, J Nucl Mater 385 (2009) 217.CrossRefGoogle Scholar
  6. 6.
    Katoh Y, Snead L L, Szlufarska I, and Weber W J, Curr Opin Solid State Mater Sci 16 (2012) 143.CrossRefGoogle Scholar
  7. 7.
    Fahrenholtz W G, and Hilmas G E, Scr Mater 129 (2017) 94.CrossRefGoogle Scholar
  8. 8.
    Mohapatra S, Mishra D K, and Singh S K, Powder Technol 237 (2013) 41.CrossRefGoogle Scholar
  9. 9.
    Yeh C L, and Liu E W, J Alloys Compd 415 (2006) 66.CrossRefGoogle Scholar
  10. 10.
    Patil K C, Bull Mater Sci 16 (1993) 533.CrossRefGoogle Scholar
  11. 11.
    Chaira D, Mishra B K, and Sangal S, Mater Sci Eng A 460–461 (2007) 111.CrossRefGoogle Scholar
  12. 12.
    Chaira D, Mishra B K, and Sangal S, Powder Technol 191 (2009) 149.CrossRefGoogle Scholar
  13. 13.
    Lonergan J M, Fahrenholtz W G, and Hilmas G E. J Am Ceram Soc 98 (2015) 2344.CrossRefGoogle Scholar
  14. 14.
    Kagawa Y, Guo S, in Ceram Matrix Compos Mater Model Technol, (eds) Bansal N P, and Lamon J, Wiley, Hoboken (2014); p 273.Google Scholar
  15. 15.
    Zapata-solvas E, Jayaseelan DD, Lin HT, Brown P, and Lee WE, J Eur Ceram Soc 33 (2013) 1373.CrossRefGoogle Scholar
  16. 16.
    Ariharan S, Sengupta P, Nisar A, Agnihotri A, Balaji N, Aruna S T, and Balani K, J Therm Spray Technol 26 (2017) 417–431.CrossRefGoogle Scholar
  17. 17.
    Anselmi-Tamburini U, Kodera Y, Gasch M, Unuvar C, Munir ZA, Ohyanagi M, and Johnson S M, J Mater Sci 41 (2006) 3097.CrossRefGoogle Scholar
  18. 18.
    Balani K, Bakshi S R, Chen Y, Laha T, and Agarwal A, J Nanosci Nanotechnol 7 (2007) 3553.CrossRefGoogle Scholar
  19. 19.
    Balani K, Harimkar S P, Keshri A, Chen Y, Dahotre N B, and Agarwal A, Acta Mater 56 (2008) 5984.CrossRefGoogle Scholar
  20. 20.
    Laha T, Kuchibhatla S, Seal S, Li W, and Agarwal A, Acta Mater 55 (2007) 1059.CrossRefGoogle Scholar
  21. 21.
    Xia Z, Riester L, Curtin W A, Li H, Sheldon B W, Liang J, Chang B, and Xu J M, Acta Mater 52 (2004) 931.CrossRefGoogle Scholar
  22. 22.
    Garvie R C, Hannink RH, and Pascoe R T, Nature 258 (1975) 703.CrossRefGoogle Scholar
  23. 23.
    Subbarao E C, Maiti H S, and Srivastava K K, Phys Status Solidi 21 (1974) 9.CrossRefGoogle Scholar
  24. 24.
    Bansal G K, and Heuer A H, Acta Metall 22 (1974) 409–417.CrossRefGoogle Scholar
  25. 25.
    Deville S, Guénin G, and Chevalier J, Acta Mater 52 (2004) 5697.Google Scholar
  26. 26.
    Gogotsi G A, Lomonova E E, and Pejchev V G, J Eur Ceram Soc 11 (1993) 123.CrossRefGoogle Scholar
  27. 27.
    Wolten G M, J Am Ceram Soc 46 (1963) 418.CrossRefGoogle Scholar
  28. 28.
    Cesari F, Esposito L, Furgiuele F M, Maletta C, and Tucci A. Ceram Int 32 (2006) 249.CrossRefGoogle Scholar
  29. 29.
    Ran S, Winnubst A J A, Koster H, de Veen P J, and Blank D H A. J Eur Ceram Soc 27 (2007) 683.CrossRefGoogle Scholar
  30. 30.
    Almeida P J, Silva C L, Alves J L, Silva F S, Martins R C, and Sampaio-Fernandes J, Rev Port Estomatol Med Dentária e Cir Maxilofac 57 (2016) 197.Google Scholar
  31. 31.
    Zhang Y L, Jin X J, Rong Y H, Hsu T Y, Jiang D Y, and Shi J L, Acta Mater 54 (2006) 1289.CrossRefGoogle Scholar
  32. 32.
    Wang Y, Bai Y, Yuan T, Chen H Y, Kang Y X, Shi W J, Song X L, and Li B Q, Surf Coat Technol 319 (2017) 95.CrossRefGoogle Scholar
  33. 33.
    Xia J, Yang L, Wu R T, Zhou Y C, Zhang L, Yin B B, and Wei Y G, Surf Coat Technol 307 (2016) 534.CrossRefGoogle Scholar
  34. 34.
    Porter D L, and Heuer A H, J Am Ceram Soc 60 (1977) 183–4.CrossRefGoogle Scholar
  35. 35.
    Gupta T K, Bechtold J H, Kuznicki R C, Cadoff L H, and Rossing B R, J Mater Sci 12 (1977) 2421.CrossRefGoogle Scholar
  36. 36.
    Becher P F, Acta Metall 34 (1986) 1885.CrossRefGoogle Scholar
  37. 37.
    Maiti H S, Gokhale K V G K, and Subbarao E C, J Am Ceram Soc 55 (1972) 317.CrossRefGoogle Scholar
  38. 38.
    Patil R N, and Subbarao E C, J Appl Crystallogr 2 (1969) 281.CrossRefGoogle Scholar
  39. 39.
    Patil R N, and Subbarao E C, Acta Crystallogr Sect A 26 (1970) 535–542.CrossRefGoogle Scholar
  40. 40.
    Ramani S V, Mohapatra S K, and Gokhale K V G K, Trans Indian Ceram Soc 30 (1971) 33.CrossRefGoogle Scholar
  41. 41.
    Kelly J R, and Denry I, Dent Mater 24 (2008) 289.CrossRefGoogle Scholar
  42. 42.
    Burger W, Richter H G, Piconi C, Vatteroni R, Cittadini A, and Boccalari M, J Mater Sci Mater Med 8 (1997) 113–8.CrossRefGoogle Scholar
  43. 43.
    Turon-Vinas M, and Anglada M, Dent Mater 34 (2018) 365.CrossRefGoogle Scholar
  44. 44.
    Denkena B, Breidenstein B, Busemann S, and Lehr C M, Proc CIRP 65 (2017) 248.CrossRefGoogle Scholar
  45. 45.
    Abd El-Ghany O S, and Sherief A H, Future Dent J 2 (2016) 55.CrossRefGoogle Scholar
  46. 46.
    Bidra A S, Tischler M, and Patch C, J Prosthet Dent 119 (2018) 220.CrossRefGoogle Scholar
  47. 47.
    Rajabbeigi N, Elyassi B, Khodadadi A, Mohajerzadeh S S, and Sahimi M, Sens Actuators B Chem 100 (2004) 139.Google Scholar
  48. 48.
    Prabhakaran K, Beigh M O, Lakra J, Gokhale N M, and Sharma S C, J Mater Process Technol 189 (2007) 178.CrossRefGoogle Scholar
  49. 49.
    Johnson S M, Thermal Protection Materials: Development, Characterization and Evaluation. in HiTemp2012, Munich (2012) p1.Google Scholar
  50. 50.
    Kinoshita M, Kose S, and Hamano Y, Osaka Kogyo Gijutsu Shikenjo Kiho 21 (1970) 97.Google Scholar
  51. 51.
    Guo S Q, Yang J M, Tanaka H, and Kagawa Y E, Compos Sci Technol 68 (2008) 3033.CrossRefGoogle Scholar
  52. 52.
    Chamberlain A L, Fahrenholtz W G, Hilmas G E, and Ellerby D T. Key Eng Mater, 264–268 (2004) 493.CrossRefGoogle Scholar
  53. 53.
    Hwang S S, Vasiliev A L, and Padture N P, Mater Sci Eng A 464 (2007) 216.CrossRefGoogle Scholar
  54. 54.
    Purwar A, Mukherjee R, Ravikumar K, Ariharan S, Gopinath N K, and Basu B, J Ceram Soc Jpn 124 (2016) 393.CrossRefGoogle Scholar
  55. 55.
    Purwar A, Thiruvenkatam V, and Basu B, J Am Ceram Soc 100 (2017) 4860.CrossRefGoogle Scholar
  56. 56.
    Nisar A, Ariharan S, Venkateswaran T, Sreenivas N, Balani K, Carbon 111 (2017) 269.CrossRefGoogle Scholar
  57. 57.
    Nieto A, Kumar A, Lahiri D, Zhang C, Seal S, and Agarwal A, Carbon 67 (2014) 398.CrossRefGoogle Scholar
  58. 58.
    Johnson SM. In Eng. Ceram. Curr. Status Futur. Prospect. (eds) Ohji T, Singh M, 1st ed., Wiley, Hoboken (2016), p 224.Google Scholar
  59. 59.
    Stewart D A, and Leiser D B, US Patent 7,314,648 B1 (2008).Google Scholar
  60. 60.
    Leiser DB, Jose S, Examiner P, Chevalier A, and Robert M, US Patent 7,381,459 B1 (2008).Google Scholar
  61. 61.
    Stewart D A, and Leiser D B, in 14th AIAA/AHI Sp. Planes Hypersonic Syst. Technol. Conf., Canberra, Australia (2006).  https://doi.org/10.2514/6.2006-7945.
  62. 62.
    Stackpoole M, Ellerby D, Venkatapathy E, and Feldman J, in 9th Model. Simulation, 7th Liq. Propulsion, 6th Spacecr. Propuls. Jt. Subcomm. Meet. (2013).Google Scholar
  63. 63.
    Jayaseelan DD, Xin Y, Vandeperre L, Brown P, and Lee WE, Compos Part B Eng 79 (2015) 392.CrossRefGoogle Scholar
  64. 64.
    Gild J, Zhang Y, Harrington T, Jiang S, Hu T, Quinn M C, Mellor W M, Zhou N, Vecchio K, and Luo J, Sci Rep 6 (2016) 2.CrossRefGoogle Scholar
  65. 65.
    Castle E, Csanádi T, Grasso S, Dusza J, and Reece M, Sci Rep 8 (2018) 1.CrossRefGoogle Scholar
  66. 66.
    Fahrenholtz W G, J Am Ceram Soc 88 (2005) 3509.CrossRefGoogle Scholar
  67. 67.
    Parthasarathy T A, Rapp R A, Opeka M, and Kerans R J, Acta Mater 55 (2007) 5999.CrossRefGoogle Scholar
  68. 68.
    Zeng Y, Wang D, Xiong X, Zhang X, Withers P J, Sun W, Smith M, Bai M, and Xiao P, Nat Commun 8 (2017) 1.CrossRefGoogle Scholar
  69. 69.
    Cheng T, Keiser J R, Brady M P, Terrani K A, and Pint B A, J Nucl Mater 427 (2012) 396.CrossRefGoogle Scholar
  70. 70.
    Hallstadius L, Johnson S, and Lahoda E, Prog Nucl Energy 57 (2012) 71.CrossRefGoogle Scholar
  71. 71.
    Dobisesky J P, in Reactor Physics Considerations for Implementing Silicon Carbide Cladding into a PWR Environment (2011), p 124.Google Scholar
  72. 72.
    Veternikobva J, Kilpeläinen S, Slugeň V, and Tuomisto F, Oxide Dispersion Strengthened Steels: A Comparison of Microstructure Features of Some Commercial Steels With Applying of Doppler Broadening Spectroscopy. Technical Report, p 1.Google Scholar
  73. 73.
    Miller M K, Hoelzer D T, Kenik E A, and Russel K F, Intermetallics 13 (2005) 387.CrossRefGoogle Scholar
  74. 74.
    Vijayalakshmi M. Raj B, Saroja S, Laha K, Vijayalakshmi M and Rao K B S, IGCAR, Kalpakkam, Technical Presentation (2005).Google Scholar
  75. 75.
    Kumar D, Prakash U, Dabhade V V, Laha K, and Sakthivel T, J Mater Eng Perform 2 6 (2017) 1817.CrossRefGoogle Scholar
  76. 76.
    Liu T, Wang L, Wang C, Shen H, and Zhang H, Mater Des 88 (2015) 862.CrossRefGoogle Scholar
  77. 77.
    Sala G, Gutmann M J, Prabhakaran D, Pomaranski D, Mitchelitis C, Kycia J B, Porter D G, Castelnovo C, and Goff J P, Nat Mater 13 (2014) 488.CrossRefGoogle Scholar
  78. 78.
    Chen Z S, Gong W P, Chen T F, and Li S L, Bull Mater Sci 34 (2011) 429.CrossRefGoogle Scholar
  79. 79.
    Murty K L, and Charit I, J Nucl Mater 383 (2008) 189.CrossRefGoogle Scholar
  80. 80.
    Kim I-S, Choi B-Y, Kang C-Y, Okuda T, Maziasz P J, and Miyahara K. ISIJ Int 43 (2003) 1640.CrossRefGoogle Scholar
  81. 81.
    Snead L L, Burchell T D, and Qualls A L, J Nucl Mater 321 (2003) 165.CrossRefGoogle Scholar
  82. 82.
    Snead L L, Burchell T D, and Katoh Y, J Nucl Mater 381 (2008) 55.CrossRefGoogle Scholar
  83. 83.
    Sauder C, in Ceram Matrix Compos Mater Model Technol (eds) Bansal N P, Lamon J, Wiley, Hoboken (2015) p 609.Google Scholar
  84. 84.
    El-Guebaly L, and the ARIES Team, Prog Nucl Sci Technol 4 (2014) 118.CrossRefGoogle Scholar
  85. 85.
    El-Guebaly L A, Wilson P, Henderson D, Sawan M, Sviatoslavsky G, Tautges T, Slaybaugh RN, Kiedrowski B, Ibrahim A, Martin C J, Overview of ARIES-CS In-Vessel Components: Integration of Nuclear, Economic, and Safety Constraints in Compact Stellarator Design (2007) p 1–8.Google Scholar
  86. 86.
    Laurent L, Moreau D, Tonon G, Improvement of the tokamak concept. in International workshop on tokamak concept improvement; Varenna (Italy); International Nuclear Information System (1994) p 1–14.Google Scholar
  87. 87.
    The “tokamak” concept, http://www.iterbelgium.be/en/tokamak-concept. Accessed November 5, 2018.
  88. 88.
    Graphite (C)—Classifications, Properties and Applications of Graphite, https://www.azom.com/article.aspx?ArticleID=1630. Accessed November 5, 2018.
  89. 89.
    Inorganic Material Database (AtomWork), http://crystdb.nims.go.jp/index_en.html. Accessed November 5, 2018.
  90. 90.
    Sengupta P, Oxidation of Graphite and Its Protection, M.Tech thesis, Indian Institute of Technology Kanpur (2013).Google Scholar
  91. 91.
    Baskin Y, and Meyer L, Phys Rev 100 (1955) 544.CrossRefGoogle Scholar
  92. 92.
    Graphite, https://www.mindat.org/min-1740.html. Accessed November 5, 2018.
  93. 93.
    Tungsten, https://www.tungsten.com/materials/tungsten/. Accessed November 5, 2018.
  94. 94.
    Lassner E, and Schubert W D, Tungsten, Springer, Boston (1999).CrossRefGoogle Scholar
  95. 95.
    Sengupta P, and Debata M, J Alloys Compd 774 (2019) 145.CrossRefGoogle Scholar
  96. 96.
    German R M, Powder Metallurgy Science. 2nd ed. Metal Powder Industries Federation, Princeton (1994).Google Scholar
  97. 97.
    Bounds C O, Bray J W, Brodsky M B, Brog T K, Capellen J, Cascone P J, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International, Almere (1991).Google Scholar
  98. 98.
    Periodic table, http://periodictable.com/. Accessed November 5, 2018.
  99. 99.
    Card number 75-1050, Powder Diffraction File, International Centre for Diffraction Data.Google Scholar
  100. 100.
    Fahrenholtz W G, Hilmas G E, Talmy I G, and Zaykoski J A, J Am Ceram Soc 90 (2007) 1347.CrossRefGoogle Scholar
  101. 101.
    McHale A E, Data Collected from Phase Diagrams for Ceramics, vol. X, American Ceramic Society, Westerville (1994).Google Scholar
  102. 102.
    The physical properties of a compound: Melting point, http://jnm.co.jp/en/data/melting_point.html. Accessed on November 5, 2018.
  103. 103.
    Cutler R A. in Ceram. Glas. Eng. Mater. handb. (ed) S. J. Schneider Jr, ASM International, Materials Park (1991) p 787.Google Scholar
  104. 104.
    Chamberlain A L, Fahrenholtz W G, Hilmas G E, and Ellerby D T, J Am Ceram Soc 87 (2004) 1170.CrossRefGoogle Scholar
  105. 105.
    The physical properties of a compound: Thermal conductivity, http://jnm.co.jp/en/data/thermal_conductivity.html. Accessed on November 5, 2018.
  106. 106.
    Card number 89-3651, Powder Diffraction File, International Centre for Diffraction Data.Google Scholar
  107. 107.
    Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, and Guitierrez-Mora F, Scr Mater 39 (2004) 5939.CrossRefGoogle Scholar
  108. 108.
    Shackelford J F, Alexander W. CRC Materials Science and Engineering Handbook. CRC Press; (2000).Google Scholar
  109. 109.
    Samsonov G V, editor. Refractory Carbides, Consultants Bureau, London (1974).Google Scholar
  110. 110.
    Jia P, Chen L, Rao J, Wang Y, Meng Q, and Zhou Y, Sci Rep 7 (2017) 1.CrossRefGoogle Scholar
  111. 111.
    Balko J, Csanádi T, Sedlák R, Vojtko M, Kovalčíková A, Koval K, Wyzga P, and Naughton-Duszová A, J Eur Ceram Soc 37 (2017) 4371.CrossRefGoogle Scholar
  112. 112.
    Zirconium carbide, https://www.azom.com/properties.aspx?ArticleID=261. Accessed on November 5, 2018.
  113. 113.
    Coefficient of Linear Expansion (CTE) of Metals and Alloys. https://ctherm.com/resources/blog/coefficient_of_linear_expansion_cte_of_metals_and_alloys/. Accessed November 5, 2018.
  114. 114.
    Lengauer W, Binder S, Aigner K, Ettmayer P, Guillou A, Debuigne J, and Groboth G, J Alloys Compd 217 (1995) 137.CrossRefGoogle Scholar
  115. 115.
    Opeka M M, Talmy I G, Wuchina E J, Zaykoski J A, and Causey S J, J Eur Ceram Soc 19 (1999) 2405.CrossRefGoogle Scholar
  116. 116.
    Guo SQ, Kagawa Y, and Nishimura T. J Eur Ceram Soc 29 (2009) 787.CrossRefGoogle Scholar
  117. 117.
    Chamberlain A L, Fahrenholtz W G, and Hilmas G E. J Am Ceram Soc 89 (2006) 450.CrossRefGoogle Scholar
  118. 118.
    Hu C, Sakka Y, Jang B, Tanaka H, Nishimura T, Guo S, and Grasso S, J Ceram Soc Jpn 118 (2010) 997.CrossRefGoogle Scholar
  119. 119.
    Monteverde F, Guicciardi S, and Bellosi A, Mater Sci Eng A 346 (2003) 310.CrossRefGoogle Scholar
  120. 120.
    Zou J, Zhang G J, Hu C F, Nishimura T, Sakka Y, Vleugels J, and Van der Biest O, J Am Ceram Soc 95 (2012) 874.Google Scholar
  121. 121.
    Zhu S, Fahrenholtz W G, and Hilmas G E, J Eur Ceram Soc 27 (2007) 2077.CrossRefGoogle Scholar
  122. 122.
    Rezaie A, Fahrenholtz W G, and Hilmas G E, J Mater Sci 42 (2007) 2735.CrossRefGoogle Scholar
  123. 123.
    Bin M H, Man Z Y, Liu J X, Xu F F, and Zhang G J, Mater Des 81 (2015) 133.CrossRefGoogle Scholar
  124. 124.
    Silvestroni L, Kleebe H J, Fahrenholtz W G, and Watts J, Sci Rep 7 (2017) 1.CrossRefGoogle Scholar
  125. 125.
    Ni D-W, Zhang G-J, Kan Y-M, and Wang P-L, Int J Appl Ceram Technol 7 (2010) 830.CrossRefGoogle Scholar
  126. 126.
    Nisar A, Ariharan S, Venkateswaran T, Sreenivas N, and Balani K, Corros Sci 109 (2016) 50.CrossRefGoogle Scholar
  127. 127.
    Fahrenholtz W G, Neuman E W, Brown-Shaklee H J, and Hilmas G E, J Am Ceram Soc 93 (2010) 3580.CrossRefGoogle Scholar
  128. 128.
    Neuman E W, Brown-Shaklee H J, Hilmas G E, and Fahrenholtz W G, J Am Ceram Soc 101 (2018) 497.CrossRefGoogle Scholar
  129. 129.
    Mitra R, Upender S, Mallik M, Chakraborty S, and Ray K K, Key Eng Mater 395 (2009) 55.CrossRefGoogle Scholar
  130. 130.
    Naslain R R, in Eng. Ceram. Curr. Status Futur. Prospect (eds) Ohji T, Singh M, Wiley, Hoboken (2016) p 142.Google Scholar
  131. 131.
    HI-Nicalon Type S Ceramic fiber, http://www.coiceramics.com/pdfs/hi-nicalon-types_1-17-06.pdf. Accessed on Novermber 5, 2018.
  132. 132.
    Koyanagi T, Katoh Y, Nozawa T, Snead L L, Kondo S, Henager C H, Ferraris M, Hinoki T, and Huang Q, J Nucl Mater 511 (2018) 544.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Advanced Materials TechnologyCSIR–Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.Department of Metallurgical and Materials EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations