Advertisement

Microstructural Evolution of Ti–Al–Ni (Cr,Co,Fe)-Based High-Entropy Alloys Processed Through Mechanical Alloying

  • R. Anand SekharEmail author
  • Srinivasa Rao Bakshi
Technical Paper

Abstract

TiAlNiCr, TiAlNiCrCo, TiAlNiCrFe, TiAlNiCrCoFe, TiAlNiCo, TiAlNiFe and TiAlNiCoFe high-entropy alloys were processed through mechanical alloying followed by spark plasma sintering (SPS). All the alloys develop a BCC (Cr-/Cr–Fe-rich) structure after mechanical alloying. Sintering at high temperature promotes the formation of one more BCC phase which is of NiAl type. Phase evolution after mechanical alloying and SPS was studied using X-ray diffraction. Composition of the phases was analysed using energy-dispersive spectroscopy, and microstructural characterisation was done using back-scattered electron images. Characterisation studies done on the alloys confirm the presence of BCC phases. Alloys without Cr develop a single BCC peak after SPS compared to alloys with Cr.

Keywords

Mechanical alloying Phase evolution BCC phase Spark plasma sintering 

Notes

References

  1. 1.
    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y, Adv Eng Mater 6 (2004), 299.Google Scholar
  2. 2.
    Miracle D B, and Senkov O N, Acta Materialia, 122 (2017).Google Scholar
  3. 3.
    Jiang S, Lin Z, Xu H, and Sun Y, J Alloys Compd 741 (2018), 826.CrossRefGoogle Scholar
  4. 4.
    Lindner T, Löbel M, Mehner T, Dietrich D, and Lampke T, Metals (Basel) 7 (2017), 162.CrossRefGoogle Scholar
  5. 5.
    Hou J, Zhang M, Ma S, Liaw P K, Zhang Y, and Qiao J, Mater Sci Eng A 707 (2017), 593.CrossRefGoogle Scholar
  6. 6.
    Moravcik I, Cizek J, Zapletal J, Kovacova Z, Vesely J, Minarik P, Kitzmantel M, Neubauer E, Dlouhy I, Mater Des 119 (2017), 141.CrossRefGoogle Scholar
  7. 7.
    Singh S, Wanderka N, Kiefer K, Siemensmeyer K, and Banhart J, Ultramicroscopy 111 (2011), 619.CrossRefGoogle Scholar
  8. 8.
    Fu Z, Chen W, Fang S, and Li X, Mater Sci Eng A 597 (2014), 204.CrossRefGoogle Scholar
  9. 9.
    Salishchev G A, Tikhonovsky M A, Shaysultanov D G, Stepanov N D, Kuznetsov A V, Kolodiy I V, Tortika A S, and Senkov O N, J Alloys Compd 591 (2014), 11.CrossRefGoogle Scholar
  10. 10.
    Zhang L, Zhou D, and Li B, Mater Lett 216 (2018), 252.CrossRefGoogle Scholar
  11. 11.
    Wang Z, Guo S, Wang Q, Liu Z, Wang J, Yang Y, and Liu C T, Intermetallics 53 (2014), 183.CrossRefGoogle Scholar
  12. 12.
    Chen Z, Chen W, Wu B, Cao X, Liu L, and Fu Z, Mater Sci Eng A 648 (2015), 217.CrossRefGoogle Scholar
  13. 13.
    Miedema A R, de Boer F R, and Boom R, Calphad 1 (1977), 341.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIIT MadrasChennaiIndia

Personalised recommendations