Advertisement

Effect of Ni and Cr Addition on Transformation and Properties of Low-Carbon Bainitic Steels

  • Zishan Yao
  • Guang XuEmail author
  • Haijiang Hu
  • Qing Yuan
  • Junyu Tian
  • Mingxing Zhou
Technical Paper
  • 126 Downloads

Abstract

Four low-carbon bainitic steels with different nickel (Ni) and chromium (Cr) contents were designed to analyze the influences of Ni and Cr on bainitic transformation, microstructure and properties by metallographic method and dilatometry. The results showed that compared to the base steel, the kinetics of bainitic transformation in Ni or Cr addition steels was retarded. In addition, single Cr addition increased the amount of bainitic transformation in spite of the retarded transformation kinetics, while single Ni addition decreased the amount of bainitic transformation. Combined addition of Ni and Cr further reduced the kinetics of bainitic transformation. Moreover, individual Ni and Cr addition or composite addition of Ni and Cr improved the strength by refining bainite microstructure, carbide precipitation and martensite, but the total elongation decreased at the same time. Steel with composite addition of Ni and Cr presented the best product of strength and elongation. The work provided reference for the composition design of low-carbon bainitic steels.

Keywords

Bainitic transformation Microstructure Properties Ni Cr 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Nos. 51874216 and 51704217), The Major Projects of Technology Innovation of Hubei Province (2017AAA116) and Hebei Joint Research Fund for Iron and Steel (E2018318013).

References

  1. 1.
    Zhao X M, Rong S F, Duan S F and Li X Y, Nature 292 (2015) 543.Google Scholar
  2. 2.
    Gong W, Tomota Y, Koo M S and Adachi Y, Scr Mater 63 (2010) 819.CrossRefGoogle Scholar
  3. 3.
    Sourmail T, Caballero F G, Garciamateo C, Smanio V, Ziegler C, Kuntz M, Elvira R, Leiro A, Vuorinen E and Teeri T, Mater Sci Technol 29 (2013) 1166.CrossRefGoogle Scholar
  4. 4.
    Humle-Smith C N and Bhadeshia H K D H, Mater Sci Eng A 700 (2017) 714.CrossRefGoogle Scholar
  5. 5.
    Garciamateo C, Caballero F G and Bhadeshia H K D H, Mater Sci Forum 500 (2005) 495.CrossRefGoogle Scholar
  6. 6.
    Feng C, Fang H S, Zheng Y K and Bai B Z, J Iron Steel Res Int 17 (2010) 53.CrossRefGoogle Scholar
  7. 7.
    Wang Y W, Feng C, Feng-Yun X U, Bai B Z and Fang H S, Iron Steel Res Int 17 (2010) 49.CrossRefGoogle Scholar
  8. 8.
    Feng R, Li S L, Li Z S and Tian L, Mater Sci Eng A 558 (2012) 205.CrossRefGoogle Scholar
  9. 9.
    Tian J Y, Xu G, Zhou M X and Hu H J, Steel Res Int (2017).  https://doi.org/10.1002/srin.201700469.Google Scholar
  10. 10.
    Chen Y W, Huang B M, Tsai Y T, Tsai S P, Chen Y C and Yang J R, Mater Charact 131 (2017) 298.CrossRefGoogle Scholar
  11. 11.
    Hu H J, Xu G, Wang L, Xue Z L, Zhang Y L and Liu G H, Mater Des 84 (2015) 95.CrossRefGoogle Scholar
  12. 12.
    Chen Y L, Dong C Z, Cai Q W, Wan D C, Li L and Qi Y, J Mater Eng 9 (2013) 16. (in Chinese).Google Scholar
  13. 13.
    Han Y, Kuang S, Liu H S, Jiang Y H and Liu G H, Iron Steel Res Int 22 (2015) 1055.CrossRefGoogle Scholar
  14. 14.
    Chen Y, Zhang D T, Liu Y C, Li H J and Xu D K, Mater Charact 84 (2013) 232.CrossRefGoogle Scholar
  15. 15.
    Kim K S, Du L X and Gao C R, Acta Metall Sin (Engl Lett) 28 (2015) 692.CrossRefGoogle Scholar
  16. 16.
    Lyu Q, Wen H Y, Tang Z H, Hu Q and Cheng B, Mater Sci Forum 815 (2015) 292.CrossRefGoogle Scholar
  17. 17.
    Zhang T, Hou H X and Chen J P, Appl Mech Mater 496 (2014) 392.CrossRefGoogle Scholar
  18. 18.
    Guo L, Bhadeshia H K D H, Roelofs H and Lembke M I, Mater Sci Technol 33 (2017) 1.Google Scholar
  19. 19.
    Zou Y, Xu Y B, Hu Z P, Gu X L, Peng F, Tan X D, Chen S Q, Han D T, Misra R D K and Wang G D, Mater Sci Eng A 675 (2016) 153.CrossRefGoogle Scholar
  20. 20.
    Pereloma E V, Gazder A A and Timokhina I B, Mater Sci Forum 739 (2013) 212.CrossRefGoogle Scholar
  21. 21.
    Tian J Y, Xu G, Zhou M X, Hu H J and Wan X L, Metals 7 (2017) 40.CrossRefGoogle Scholar
  22. 22.
    Zhou M X, Xu G, Tian J Y, Hu H J and Yuan Q, Metals 7 (2017) 263.CrossRefGoogle Scholar
  23. 23.
    Pagounis E, Laptev A, Szczerba M J, Chulist R and Laufenberg M, Acta Mater 89 (2015) 32.CrossRefGoogle Scholar
  24. 24.
    Sharma V K, Chattopadhyay M K and Roy S B, Phys Rev B 76 (2007) 140401.CrossRefGoogle Scholar
  25. 25.
    Kaloshkin S D, Tcherdyntsev V V, Baldokhin Y V, Tomilin I A and Shelekhov E V, J Non-Cryst Soilds 287 (2001) 329.CrossRefGoogle Scholar
  26. 26.
    Caballero F G and Bhadeshia H K D H, Solid State Mater Sci 8 (2004) 251.CrossRefGoogle Scholar
  27. 27.
    Wen T, Hu X F, Song Y Y, Yan D S and Rong L J, Acta Metall Sin 50 (2014) 447. (in Chinese).Google Scholar
  28. 28.
    Jiang X L, Zhang F Q, Zhang Y F, Zhang W J and Chen G H, Proc Spie 1759 (1992)145.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced SteelsWuhan University of Science and TechnologyWuhanChina

Personalised recommendations