Advertisement

Mechanical and Wear Behaviour of Hot-Pressed 304 stainless Steel Matrix Composites Containing TiB2 Particles

  • Silani SahooEmail author
  • Bharat B. Jha
  • Tarasankar Mahata
  • Jyothi Sharma
  • Tammana S. R. Ch. Murthy
  • Animesh Mandal
Technical Paper
  • 95 Downloads

Abstract

In the present article, mechanical and wear behaviour of hot-pressed 304 stainless steel matrix composites containing 2 and 4 vol% TiB2 particles was investigated. A density of over 92% was achieved at optimum hot-pressing temperature and TiB2 particles’ content. Microhardness and yield strength of the composites were found to be improved remarkably as compared to their unreinforced counterpart. The enhancement of mechanical properties of the composites was discussed in light of their microstructural aspects and different possible strengthening mechanism models. Taylor strengthening was found to be dominant strengthening mechanism as compared to Orowan strengthening and load-bearing effect. Dry sliding wear behaviour was also investigated under load of 35 N at sliding speed 0.3 m/s. The wear resistance of the composites was found to be improved owing to uniform distribution of hard TiB2 particles. Based on our findings, it was concluded that processing parameters and amount of TiB2 have significant influence on mechanical and wear behaviour of steel matrix composites.

Keywords

304 stainless steel Hot pressing Microstructure Mechanical properties Wear 

Notes

Acknowledgements

The authors are grateful to the director, CSIR-IMMT, Bhubaneswar, for supporting and giving permission to publish this research work.

References

  1. 1.
    Akhtar F, Can Metall Q 53 (2014) 253.CrossRefGoogle Scholar
  2. 2.
    Springer H, Aparicio Fernandez R, Duarte M J, Kostka A, and Raabe D, Acta Mater 96 (2015) 47.CrossRefGoogle Scholar
  3. 3.
    Chen S, Zhao Z, Huang X, and Zhang L, Mater Sci Eng A 674 (2016) 335.CrossRefGoogle Scholar
  4. 4.
    Baron C, Springer H, and Raabe D, Mater Des 97 (2016) 357.CrossRefGoogle Scholar
  5. 5.
    Sulima I, Klimczyk P, and Malczewski P, Acta Metall Sin (Engl Lett) 27 (2014) 12.CrossRefGoogle Scholar
  6. 6.
    Moazami-Goudarzi M, and Akhlaghi F, Tribol Int 102 (2016) 28.CrossRefGoogle Scholar
  7. 7.
    Degnan C C, and Shipway P H, Wear 252 (2002) 832.CrossRefGoogle Scholar
  8. 8.
    Sulima I, Jaworska L, Wyżga P, and Perek-Nowak M, J Achiev Mater Manuf Eng 48 (2011) 52.Google Scholar
  9. 9.
    Sahoo S, Jha B B, Sahoo T K, Mahata T S, Sharma J, Murthy T S R C and Mandal A, Mater Sci Technol 34 (2018) 1965.CrossRefGoogle Scholar
  10. 10.
    Ranganath S, J Mater Sci 32(1997) 1.Google Scholar
  11. 11.
    Saidi A, Chrysanthou A, Wood J V, and Kellie J L, J Mater Sci 29(1994) 4993.CrossRefGoogle Scholar
  12. 12.
    Jiang Q C, Ma B X, Wang H Y, Wang Y, and Dong Y P, Compos Part A 37 (2006) 133.Google Scholar
  13. 13.
    Kato O, and Kobashi M, J Mater Sci Res 1 (2012) 110.Google Scholar
  14. 14.
    Anal A, Bandyopadhyay T K, and Das K, J Mater Process Technol 172 (2006) 70.CrossRefGoogle Scholar
  15. 15.
    Bains P S, Sidhu S S, and Payal H S, Mater Manuf Process 31 (2016) 553.CrossRefGoogle Scholar
  16. 16.
    Wang Y, Zhang Z Q, Wang H Y, Ma B X, and Jiang Q C, Mater Sci Eng A 422(2006) 339.CrossRefGoogle Scholar
  17. 17.
    Sulima I, Hyjek P, and Tokarski T, Met Foundry Eng 40 (2014) 33.CrossRefGoogle Scholar
  18. 18.
    Tjong S C, and Lau K C, Compos Sci Technol 60 (2000) 1141.CrossRefGoogle Scholar
  19. 19.
    Sulima I, Arch Metall Mater 59 (2014) 1263.CrossRefGoogle Scholar
  20. 20.
    Sulima I, Jaworska L, and Figiel P, Arch Metall Mater 59 (2014) 205.CrossRefGoogle Scholar
  21. 21.
    Tjong S C, and Lau K C, Mater Lett 41 (1999) 153.CrossRefGoogle Scholar
  22. 22.
    Bacon D H, Edwards L, Moffatt J E, and Fitzpatrick M E, Int J Fatigue 48(2013)39.CrossRefGoogle Scholar
  23. 23.
    Akhtar F, and Guo S J, Mater Charact 59 (2008) 84.CrossRefGoogle Scholar
  24. 24.
    Nahme H, Lach E, and Tarrant A, J Mater Sci 44 (2009) 463.CrossRefGoogle Scholar
  25. 25.
    Pagounis E, and Lindroos V K, Mater Sci Eng A 246 (1998) 221.CrossRefGoogle Scholar
  26. 26.
    Khoa H X, Tuan N Q, Lee Y H, Lee B H, Viet N H, and Kim J S, J Korean Powder Met Inst 20 (2013) 221.CrossRefGoogle Scholar
  27. 27.
    Sahoo S, Jha B B, Sahoo T K, and Mandal A, Mater Manuf Process 33 (2017) 564.CrossRefGoogle Scholar
  28. 28.
    Madhusudhan T, and Senthil Kumar M, Int J Mech Eng Technol 8 (2017) 82.Google Scholar
  29. 29.
    Leszczyńska-Madej B, Wąsik A, and Madej M, Arch Metall Mater 62 (2017) 747.CrossRefGoogle Scholar
  30. 30.
    Voort G F V and Fowler R, Adv Mater Process 170 (2012) 28.Google Scholar
  31. 31.
    Park B G, Crosky A G, and Hellier A K, J Mater Sci 36 (2001) 2417.CrossRefGoogle Scholar
  32. 32.
    Yuan M, Zhang C, Tan C G, Luo Z C, Mao Y F, and Lin J G, Mater Sci Eng A 590 (2014)30.CrossRefGoogle Scholar
  33. 33.
    Chelliah N M, Singh H, and Surappa M K, Mater Chem Phys 194 (2017) 65.CrossRefGoogle Scholar
  34. 34.
    Nie K, Deng K, Wang X, and Wu K, J Mater Res 32 (2017) 2609.CrossRefGoogle Scholar
  35. 35.
    Xiao P, Gao Y, Yang C, Liu Z, Li Y, and Xu F, Mater Sci Eng A 710 (2018) 251.CrossRefGoogle Scholar
  36. 36.
    Kim C S, Sohn II, Nezafati M, Ferguson B, Schultz B F, Gohari Pradeep Z B, Rohatgi K, and Cho K, J Mater Sci 48 (2013) 4191.CrossRefGoogle Scholar
  37. 37.
    Frost H J, and Ashby M F, Deformation-Mechanism Maps The Plasticity and Creep of Metals and Ceramics, Pergamon, New York (1982), p 166.Google Scholar
  38. 38.
    Reddy A C, and Zitoun E, Int J Eng Sci Technol 3 (2011) 6090.Google Scholar
  39. 39.
    AlMangour B, Grzesiak D, and Yang J M, Mater Des 104 (2016) 141.CrossRefGoogle Scholar
  40. 40.
    Mahajan G, Karve N, Patil U, Kuppan P, and Venkatesan K, Indian J Sci Technol 8 (2015) 101.CrossRefGoogle Scholar
  41. 41.
    Chelliah N M, Singh H, and Surapp M K, J Mag Alloys 4 (2016) 306.CrossRefGoogle Scholar
  42. 42.
    Jin C, Onuoha C C, Farhat Z N, Kipouros G J, and Plucknett K P, Tribol Int 105 (2017) 250.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Silani Sahoo
    • 1
    Email author
  • Bharat B. Jha
    • 2
  • Tarasankar Mahata
    • 3
  • Jyothi Sharma
    • 3
  • Tammana S. R. Ch. Murthy
    • 4
  • Animesh Mandal
    • 5
  1. 1.Advanced Materials Technology DepartmentCSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia
  2. 2.Business Development & Standardisation DivisionCSIR-Central Glass & Ceramic Research InstituteKolkataIndia
  3. 3.Powder Metallurgy DivisionBhabha Atomic Research CentreNavi MumbaiIndia
  4. 4.Materials Processing and Corrosion Engineering DivisionBhabha Atomic Research CentreMumbaiIndia
  5. 5.School of Minerals, Metallurgical and Materials EngineeringIndian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations