Development of Superhydrophobic Coating on Copper for Enhanced Corrosion Resistance in Chloride Medium

  • S. C. Vanithakumari
  • R. P. GeorgeEmail author
  • U. Kamachi Mudali
  • John Philip
Technical Paper


In this paper, a simple and economic method of superhydrophobic (SHP) surface modification of copper surfaces with water contact angle (WCA) of 147° ± 0.1° and roll-off angle of 5° is reported. SHP copper surfaces were synthesized by annealing copper foil in air and then coated with silica nanoparticles dispersed in silane solution. Scanning electron microscopy analysis of the SHP Cu surfaces showed the uniform distribution of spherical micron-sized CuO particles throughout the surface. Atomic force microscopy images of silane-coated surfaces showed increased valleys and peaks with higher root mean square and average roughness contributed by the silica nanoparticles. X-ray photoelectron spectroscopy results further confirmed the micron-sized CuO particles in the outer layer with silane containing silica nanoparticles, which contributed to the micro-/nano-roughness causing a phenomenal improvement in the WCA values. Electrochemical studies carried out in aqueous chloride environments demonstrated the corrosion resistance of superhydrophobic copper surface as evident from the shift in open-circuit potential values towards the nobler direction, increase in the charge transfer resistance and lower anodic current as compared with the fresh copper foil.


Superhydrophobicity Annealing Water contact angle Corrosion Durability Electron microscopy 



The authors would like to acknowledge Mr. Satyabrata Mishra, RRDD and Mr. C. Thinaharan, CSTD, IGCAR, for ATR-IR, XRD and XPS characterizations, respectively.


  1. 1.
    Song W, Zhang J, Xie Y, Cong Q, and Zhao B, J Colloid Interf Sci 329 (2009) 208CrossRefGoogle Scholar
  2. 2.
    Sang Y C, Albadarin A B, Al-Muhtaseb A H, Mangwandi C, McCracken J N, Bell S E J, and Walker G M, Appl Surf Sci 335 (2015) 107CrossRefGoogle Scholar
  3. 3.
    Josephine Therasa J, Vinita V, George R P, Kamruddin M, Kalavathi S, Manoharan N, Tyagi A K, and Dayal R K, Curr Sci 99 (2010) 1079Google Scholar
  4. 4.
    Xi W, Qiao Z, Zhu C, Jia A, and Li M, Appl Surf Sci 255 (2009) 4836CrossRefGoogle Scholar
  5. 5.
    Platzman I, Saguy C, Brener R, Tannenbaum R, and Haick H, Langmuir 26 (2010) 191CrossRefGoogle Scholar
  6. 6.
    Huang Y, Sarkar D K, and Grant Chen X, Mater Lett 64 (2010) 2722CrossRefGoogle Scholar
  7. 7.
    Yin S, Wu D, Yang J, Lei S, Kuang T, and Zhu B, Appl Surf Sci 257 (2011) 8484Google Scholar
  8. 8.
    Xia Y, Yu X, He Z, Lu Y, Zhang Y, Sun S, Zhu S, and Li X, Ceram Int 43 (2017) 14499CrossRefGoogle Scholar
  9. 9.
    Yuan S, Pehkonen S O, Liang B, Ting Y P, Neoh K G, and Kang E T, Corros Sci 53 (2011) 2738CrossRefGoogle Scholar
  10. 10.
    Sasmal A K, Mondal C, Sinha A K, Gauri S S, Pal J, Aditya T, Ganguly M, Dey S, and Pal T, ACS Appl Mater Interfaces 6 (2014) 22034CrossRefGoogle Scholar
  11. 11.
    Xu N, Sarkar D K, Grant Chen X, Zhang H, and Tong W, RSC Adv 6 (2016) 35466CrossRefGoogle Scholar
  12. 12.
    Zerjav G, and Milosev I, Corros Sci 98 (2015) 180CrossRefGoogle Scholar
  13. 13.
    Wang B, and Guo Z, Appl Phys Lett 103 (2013) 063704CrossRefGoogle Scholar
  14. 14.
    ZhangY, Yu X, Zhou Q, Chen F, and Li K, Appl Surf Sci 256 (2010) 1883CrossRefGoogle Scholar
  15. 15.
    Chen X, Yang G, Kong L, Dong D, Yu L, Chen J, and Zhang P, Mater Chem Phys 123 (2010) 309CrossRefGoogle Scholar
  16. 16.
    Nie R, Xu C, Wang Y, and Li B, Asian J Chem 25 (2013) 5553CrossRefGoogle Scholar
  17. 17.
    Chaudhary A, and Barshilia H C, J Phys Chem C 115 (2011) 18213CrossRefGoogle Scholar
  18. 18.
    Basu M, Sinha A K, Pradhan M, Sarkar S, Negishi Y, and Pal T, J Phys Chem C 115 (2011) 20953CrossRefGoogle Scholar
  19. 19.
    Latthe S S, Sudhagar P, Ravidhas C, Jennifer Christy A, David Kirubakaran D, Venkatesh R, Anitha Devadoss, Terashima C, Nakata K, and Akira F, Cryst Eng Comm 17 (2015) 2624CrossRefGoogle Scholar
  20. 20.
    Vanithakumari S C, Shinde S L, and Nanda K K, Mat Sci Eng B 176 (2011) 669CrossRefGoogle Scholar
  21. 21.
    Shinde S L, and Nanda K K, RSC Adv 2 (2012) 3647CrossRefGoogle Scholar
  22. 22.
    Hoque E, DeRose J A, Hoffmann P, Bhushan B, and Mathieu H J, J Chem Phys 126 (2007) 114706CrossRefGoogle Scholar
  23. 23.
    Qu M, Zhang B, Song S, Chen L, Zhang J, and Cao X, Adv Funct Mater 17 (2007) 593CrossRefGoogle Scholar
  24. 24.
    Qian B, and Shen Z, Langmuir 21 (2005) 9007CrossRefGoogle Scholar
  25. 25.
    Vanithakumari S C, George R P, and Kamachi Mudali U, Appl Surf Sci 292 (2014) 650CrossRefGoogle Scholar
  26. 26.
    Ezhil Vizhi M, Vanithakumari S C, George R P, Vasantha S, and Kamachi Mudali U, Surf Eng 32 (2016) 139CrossRefGoogle Scholar
  27. 27.
    Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J, and Baro A M, Rev Sci Instrum 78 (2007) 013705CrossRefGoogle Scholar
  28. 28.
    Roos A, Chibuye T, and Karlson B, Sol Energy Mater 7 (1983) 453CrossRefGoogle Scholar
  29. 29.
    Roos A, and Karlson B, SolEnergy Mater 7 (1983) 467CrossRefGoogle Scholar
  30. 30.
    Mclntyre N S, and Cook M G, Anal Chem 47 (1975) 2208CrossRefGoogle Scholar
  31. 31.
    Novakov T, and Prins R, Solid State Commun 9 (1971) 1975CrossRefGoogle Scholar
  32. 32.
    Carolina Araujo Y, Toledo P G, Leon V, and Gonzalez H Y, J Colloid Interface Sci 176 (1995) 485CrossRefGoogle Scholar
  33. 33.
    Erdem B, Hunsicker R A, Simmons G W, David Sudol E, Dimonie V L, and El-Aasser M S, Langmuir 17 (2001) 2664CrossRefGoogle Scholar
  34. 34.
    Pazokifard S, Mirabedni S M, Esfandeh M, and Farrokhpay S, Adv Powder Technol 23 (2012) 428CrossRefGoogle Scholar
  35. 35.
    Phiwdang K, Suphankij S, Mekprasart W, and Pecharapa W, Energy Procedia 34 (2013) 740CrossRefGoogle Scholar
  36. 36.
    Zisman W A Ind Eng Chem 55 (1963) 18CrossRefGoogle Scholar
  37. 37.
    Gindl M, Sinn G, Gindl W, Reiterer A, and Tschegg S, Colloid Surf A 181 (2001) 279CrossRefGoogle Scholar
  38. 38.
    Sutha S, Vanithakumari S C, George R P, Kamachi Mudali U, Baldev R, and Ravi K R, Appl Surf Sci 347 (2015) 839CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Vilaró I, Yagüe J L, and Borrós S, ACS Appl Mater Interfaces 9 (2017) 1057CrossRefGoogle Scholar
  41. 41.
    Huang Y, Sarkar D K, Gallant D, and Chen X G, Appl Surf Sci 282 (2013) 689CrossRefGoogle Scholar
  42. 42.
    Xu W, Hu Y, Bao W, Xie X, Liu Y, Song A, and Hao J, Appl Surf Sci 399 (2017) 491CrossRefGoogle Scholar
  43. 43.
    Ningshen S, Kamachi Mudali U, Mukherjee P, Sarkar A, Barat P, Padhy N, and Baldev R, Corros Sci 50 (2008) 2124CrossRefGoogle Scholar
  44. 44.
    Adeloju S B, and Duan Y Y, Br Corros J 29 (1994) 309CrossRefGoogle Scholar
  45. 45.
    Feng L, Zhao L, Qiang X, Liu Y, Sun Z, and Wang B, Appl Phys A 119 (2015) 75CrossRefGoogle Scholar
  46. 46.
    Liu T, Chen S, Cheng S, Tian J, Chang X, and Yin Y, Electrochim Acta 52 (2007) 8003CrossRefGoogle Scholar
  47. 47.
    Vanithakumari S C, George R P, and Kamachi Mudali U, J Mater Eng Perform 26 (2017) 2640CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • S. C. Vanithakumari
    • 1
  • R. P. George
    • 1
    Email author
  • U. Kamachi Mudali
    • 2
  • John Philip
    • 1
  1. 1.Corrosion Science and Technology DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Heavy Water BoardMumbaiIndia

Personalised recommendations