Zero-Waste Recycling Method for Nickel Leaching Residue by Direct Reduction–Magnetic Separation Process and Ceramsite Preparation

  • Qiang Zhao
  • Jilai XueEmail author
  • Wen Chen
Technical Paper


In this paper, a novel process for beneficiation of metallic iron from nickel leaching residue and preparation of ceramsite from tailings by direct reduction–magnetic separation process is reported. The optimal conditions for direct reduction process were 1100 °C roasting temperature, 120 min duration, and 30 wt.% reductant dosage. The reduced sample was benefited from low-intensity magnetic separation. This process yielded an iron concentrate of 82.32 wt.% grade and 78.05 wt.% recovery. Hence, this metallic iron could be used as a feedstock for the steel industry. Tailings of the magnetic separation procedure were used to prepare ceramsite. Optimal conditions for preparing ceramsite were: 55% magnetic separation tailings, 20% silica, 15% fly ash, 10% charcoal, a 1150 °C roasting temperature, and a holding time of 30 min. The ceramsite properties met the requirement of CJ/T299-2008 National Standard. These results suggested that developing this solid waste would have environmental and economic benefits.


Zero-waste recycling Nickel leaching residue Direct reduction Ceramsite preparation 



The authors wish to express their thanks to the Natural Science Foundation of China (NO.5157041410) for the financial support of this research.

Author Contributions

Qiang Zhao conducted the experimental work and prepared the manuscript; Jilai Xue directed the research work and modified the manuscript; Wen Chen participated in the design of the research work at different stages.

Compliance with Ethical Standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Valix M, Tang J Y, and Cheung W H, Miner Eng J 12 (2001)1629.CrossRefGoogle Scholar
  2. 2.
    Guo Q, Qu J K, Han B B, Zhang P Y, Song Y X, and Qi T, Miner Eng J 2 (2015)1.CrossRefGoogle Scholar
  3. 3.
    Ma B Z, Wang C Y, Yang W J, Yin F, and Chen Y Q, Miner Eng J 9 (2013)107.Google Scholar
  4. 4.
    Ma B Z, Wang C Y, Yang W J, Yang B, and Zhang Y L, Miner Eng J 5 (2013)152.Google Scholar
  5. 5.
    Elliott R, and Pickles C A, High Temp Mater Processes J 9 (2017) 836.Google Scholar
  6. 6.
    Loveday B K, Miner Eng J 7 (2008)534.Google Scholar
  7. 7.
    Macasek F, Kufcakova J, Rajec P, Kopunec R, Jakabsky S, Lovas M, and Hredzak S, Chem Papers-Chemicke Zvesti J 3 (2004)163.Google Scholar
  8. 8.
    Zhu D Q, Zhou X L, Luo Y H, Pan J, and Bai B, High Temp Mater Processes J 10 (2016)1031.Google Scholar
  9. 9.
    Dasgupta R, and Chaubey A K, Trans Indian Inst Met J 6 (2009)187.CrossRefGoogle Scholar
  10. 10.
    Whittington B I and Johnson J A, Hydrometall J, 78 (2005) 256.CrossRefGoogle Scholar
  11. 11.
    Stamboliadis E, Alevizos G, and Zafiratos J, Miner Eng J 17 (2004) 245.CrossRefGoogle Scholar
  12. 12.
    Dorfling C, Akdogan G, Bradshaw S M, and Eksteen J J, Miner Eng J 6 (2011)583.CrossRefGoogle Scholar
  13. 13.
    Wang R, Liu Z G, Chu M S, Wang H T, Zhao W, and Gao L H, J Iron Steel Res J 5 (2018)497.CrossRefGoogle Scholar
  14. 14.
    Zhu D Q, Luo Y H, Pan J, and Zhou X L, High Temp Mater Processes J 2 (2016)187.Google Scholar
  15. 15.
    Yu W, Sun T C, Liu Z Z, Kou J, and Xu C Y, ISIJ Int J 1 (2014)56.CrossRefGoogle Scholar
  16. 16.
    Yu W, Wen X J, Chen J G, Kuang J Z, Tang Q Y, Tian Y C, Fu J L, Huang W Q, and Qiu T S, Miner J 2 (2017)2.Google Scholar
  17. 17.
    Guo Z Q, Zhu D Q, Pan J, Yao W J, Xu W Q, and Chen J, JOM J 9 (2017) 1688.CrossRefGoogle Scholar
  18. 18.
    Zhou X L, Zhu D Q, Pan J, and Wu T J, ISIJ Int J 7 (2015)1347.Google Scholar
  19. 19.
    Lei C, Yan B, Chen T, and Xiao X M, J Clean Prod J 8 (2017) 74.Google Scholar
  20. 20.
    Li C, Sun H H, Bai J, and Li L T, J Hazard Mater J 2 (2010) 71.CrossRefGoogle Scholar
  21. 21.
    Yang C C, Li S Q, Zhang C Q, Bai J X, and Guo Z J, Miner Process Extr Metall Rev J 1 (2018)44.CrossRefGoogle Scholar
  22. 22.
    Kumar R, Das P, Beulah M, Arjun H R, and Ignaitus G, J Adv Manuf Syst J 3 (2017)276.Google Scholar
  23. 23.
    Gayana B C and Chandar K R, Adv Concr Constr J 3 (2018) 222.Google Scholar
  24. 24.
    Manjarrez L, and Zhang L Y, J Mater Civ Eng J 9 (2018) 33.Google Scholar
  25. 25.
    Chen Q S, Zhang Q L, Fourie A, and Xin C, J Environ Manag J 10 (2017)20.Google Scholar
  26. 26.
    Kinnunen P, Ismailov A, Solismaa S, Sreenivasan H, Räisänen M L, Levänen E, and Illikainen M, J Clean Prod J 10 (2017)635.Google Scholar
  27. 27.
    Wu H Q, Zhang T, Pan R J, Chun Y Y, Zhou H M, Zhu W X, Peng H Z, and Zhang Q, Constr Build Mater J 5 (2018)368.Google Scholar
  28. 28.
    Sun M T, Yang Z M, Lu J, Fan X L, Guo R B, and Fu S F, J Chem Technol Biotechnol 2 (2018)2408.Google Scholar
  29. 29.
    Li H, Guo Z, Wu D F, Fan J, Huang S B, and Zhou S F, Mater J 3 (2018)359.CrossRefGoogle Scholar
  30. 30.
    Wen S H, Chen L, Li W Q, Ren H Q, Li K, Wu B, Hu H D, and Xu K, Sci Rep J 6 (2018)2.Google Scholar
  31. 31.
    Jing Q X, Wang Y Y, Chai L Y, Tang C J, Huang X D, Guo H, Wang W, and You W, Trans Nonferrous Met Soc China J 5 (2018)1053.Google Scholar
  32. 32.
    Liu G S, Strezov V, Lucas J A, and Wibberley L J, Thermochim Acta J 410 (2004)133.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and TechnologyBeijingChina
  2. 2.Changsha Research Institute of Mining and Metallurgy Co, LtdChangshaChina

Personalised recommendations