Advertisement

Microstructure Evolution and Softening Mechanism During Hot Deformation of Cu–0.19Cr–0.1Ag Alloy

  • Zhiyong Li
  • Yanfeng Cao
  • Chengcong Huang
  • Liang QiEmail author
  • Hongjin ZhaoEmail author
  • Qiqi Hao
Technical Paper
  • 16 Downloads

Abstract

Hot deformation tests of an upward continuous cast Cu–0.19Cr–0.1Ag were performed on a thermal simulation testing machine with various strain rates (0.01–10 s−1) at different deformation temperatures (750–950 °C) to investigate the microstructural evolution of hot deformation and the softening mechanism. From the results, a flow stress reduction ratio diagram was constructed. The diagram was divided into four regions with different softening mechanisms according to the stress–strain curve. Dynamic recrystallization was accompanied by two nucleation mechanisms: continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization, and the effect of CDRX decreased with increasing strain rate.

Keywords

Cu–0.19Cr–0.1Ag alloy Hot compression Reduction ratio of flow stress Microstructure Softening mechanism 

Notes

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2016YFB0301400). We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

References

  1. 1.
    Shen L, Li Z, Dong Q, Xiao Z, and Chen, C, J Mater Res 31 (2016) 1113.CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Tian B, Volinsky A A, Chen X, Sun H, Chai Z, Liu P, and Liu Y, J Mater Res 31 (2016) 1275.CrossRefGoogle Scholar
  3. 3.
    Batra I S, Dey G K, Kulkarni U D, and Banerjee S, J Nucl Mater 299 (2001) 91.CrossRefGoogle Scholar
  4. 4.
    Liu Q, Zhang X, Ge Y, Wang J, and Cui Z J, Metall Mater Trans A 37 (2006) 3233.CrossRefGoogle Scholar
  5. 5.
    Shangina D V, Bochvar N R, Gorshenkov M V, Yanar H, Purcek G, and Dobatkin S V, Mater Sci Eng A 650 (2016) 63.CrossRefGoogle Scholar
  6. 6.
    Zhang S, Li R, Kang H, Chen Z, Wang W, Zou C, and Wang T, Mater Sci Eng A 680 (2017) 108.CrossRefGoogle Scholar
  7. 7.
    Sun L X, Tao N R, and Lu K, Scr Mater 99 (2015) 73.CrossRefGoogle Scholar
  8. 8.
    Wang W, Li R, Zou C, Chen Z, Wen W, Wang T, and Yin G, Mater Des 92 (2016) 135.CrossRefGoogle Scholar
  9. 9.
    Lin G B, Wang Z D, Zhang M K, Zhang H, and Zhao M, Mater Sci Technol 27 (2011) 966.CrossRefGoogle Scholar
  10. 10.
    Islamgaliev R K, Sitdikov V D, Nesterov K M, and Pankratov D L, Rev Adv Mater Sci 39 (2014) 61.Google Scholar
  11. 11.
    Liu Y, Li Z, Jiang Y, Zhang Y, Zhou Z, and Lei Q, J Mater Res 32 (2017) 1324.CrossRefGoogle Scholar
  12. 12.
    Jia S G, Liu P, Ren F Z, Tian B H, Zheng M S, and Zhou G S, Met Mater Int 13 (2007) 25.CrossRefGoogle Scholar
  13. 13.
    Raabe D, Miyake K, and Takahara H, Mater Sci Eng A 291 (2000) 186.CrossRefGoogle Scholar
  14. 14.
    Liu K, Lu D, Zhou H, Yang Y, Atrens A, and Zou J, J Mater Eng Perform 22 (2013) 3723.CrossRefGoogle Scholar
  15. 15.
    Raabe D, and Ge J, Scr Mater 51 (2004) 915.CrossRefGoogle Scholar
  16. 16.
    Muramatsu N, and Akaiwa M, Mater Trans 57 (2016) 1794.CrossRefGoogle Scholar
  17. 17.
    Pinheiro I P, Barbosa R, and Cetlin P R, Mater Sci Eng A 457 (2007) 90.CrossRefGoogle Scholar
  18. 18.
    Shi C, Lai J, and Chen X, Mater 7 (2014) 244.CrossRefGoogle Scholar
  19. 19.
    Zeng Z, Chen L, Zhu F, and Liu X, J Mater Sci Technol 27 (2011) 913.CrossRefGoogle Scholar
  20. 20.
    Peng Y H, Li D Y, Wang Y C, Yin J L, and Zeng X Q, Mater Sci Forum 488 (2005) 393.Google Scholar
  21. 21.
    Quan G Z, Pan J, Wang X, Zhang Z H, Zhang L, and Wang T, Mater Sci Eng A 679 (2017) 358.CrossRefGoogle Scholar
  22. 22.
    Chen Y Y, Li B H, and Kong F T, Trans Nonferrous Met Soc China 17 (2007) 58.CrossRefGoogle Scholar
  23. 23.
    Kashihara K, Konishi H, and Shibayanagi T, Mater Sci Eng A 528 (2011) 8443.CrossRefGoogle Scholar
  24. 24.
    Yang Q, Deng Z, Zhang Z, Liu Q, Jia Z, and Huang G, Mater Sci Eng A 662 (2016) 204.CrossRefGoogle Scholar
  25. 25.
    Shi Z X, Yan X F, Duan C H, and Zhao M H, Trans Nonferrous Met Soc China 27 (2017) 538.CrossRefGoogle Scholar
  26. 26.
    Zhang H, Zhang K, Zhou H, Lu Z, Zhao C, and Yang X, Mater Des 80 (2015) 51.CrossRefGoogle Scholar
  27. 27.
    Li D, Guo Q, Guo S, Peng H, and Wu Z, Mater Des 32 (2011) 696.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations