Hot Corrosion Studies on Detonation-Gun-Sprayed NiCrAlY and 80Ni–20Cr Coatings on Alloy X22CrMoV12-1 at 600 °C

  • P. Subramani
  • Nirmal Padgelwar
  • Sanket Shetty
  • Anirudha Pandit
  • V. SreenivasuluEmail author
  • N. Arivazhagan
  • W. U. Duoli
  • M. Manikandan
Technical Paper


The present study investigates the type II low-temperature (600 °C) corrosion behavior of X22CrMoV12-1 substrate coated with NiCrAlY and 80Ni–20Cr powders through a detonation spray technique. Coated substrates and uncoated substrates were exposed to low-temperature corrosion test in both air oxidation environment and molten salt environment for 50 cycles at 600 °C. From the thermogravimetric analysis, it was seen that all the substrates trailed parabolic rate law. Higher weight gain resulted in the uncoated substrate under molten salt environment. NiCrAlY substrate showed lesser weight gain under air oxidation environment. It was also noted that lesser weight gain was observed in coated substrates (NiCrAlY and 80Ni20Cr) compared to the uncoated substrates. The presence of MnCr2O4, Ni3Al, NiO, Cr2O3, and Al2O3 provided good hot corrosion resistance to coated substrates. Thus, it showed that NiCrAlY and 80Ni–20Cr coated X22CrMoV12-1 substrate delivered adequate resistance to corrosion at 600 °C.


NiCrAlY 80Ni–20Cr Detonation spray Corrosion 


  1. 1.
    Shirzadi A, and Jackson S, Structural Alloys for Power Plants, Operational Challenges, and High-Temperature Materials, 1st ed, Woodhead Publishing, Sawston (2014).Google Scholar
  2. 2.
    Eliaz N, Shemesh G, and Latanision R M, Eng Fail Anal 9 (2002) 31.CrossRefGoogle Scholar
  3. 3.
    Sidhu T S, Malik A, Prakash S, and Agrawal R D, in Oxidation and Hot Corrosion Resistance of HVOF WC-NiCrFeSiB Coating on Ni and Fe-Based Superalloys at 800 °C, (eds) Marple B R, Hyland M M, Lau Y C, Li C J, Lime R S, and Montavon G, Thermal Spray 2007: Global Coating Solutions, ASM International, Novelty (2007), p 538.Google Scholar
  4. 4.
    Hidalgo H V, Varela J B, Menendez A C, and Martınez S, Wear 247 (2001) 214.CrossRefGoogle Scholar
  5. 5.
    Smith R W, and Knight R, JOM 47 (1995) 32.CrossRefGoogle Scholar
  6. 6.
    Aguero A, J Energy Mater 3 (2008) 35.CrossRefGoogle Scholar
  7. 7.
    Heath G R, Hiemgartner P, Irons G, Miller R, and Gustafsson S, Mater Sci Forum 251–254 (1997) 809.CrossRefGoogle Scholar
  8. 8.
    Rosso M, Scrivani A, Ugues D, and Bertini S, Int J Refract Met Hard Mater 19 (2001) 45.CrossRefGoogle Scholar
  9. 9.
    Gong X, Chen R, Wang Q, Wang Y, Zhang N, Zhang Z, and Fu H, J Alloys Compd 729 (2017) 679.CrossRefGoogle Scholar
  10. 10.
    Srinivasalu V, and Manikandan M, Surf Coat Technol 337 (2018) 250.CrossRefGoogle Scholar
  11. 11.
    Davis J R, Handbook of Thermal Spray Technology, ASM International, Novelty (2004).Google Scholar
  12. 12.
    Kamal S, Jayaganthan R, and Prakash S, Bull Mater Sci 33 (2010) 299.CrossRefGoogle Scholar
  13. 13.
    Stroosnijder M F, Mevrel R, and Bennett M J, Mater High Temp 12 (1994) 53.CrossRefGoogle Scholar
  14. 14.
    Niranatlumpong P, Ponton P C, and Evans H E, Oxid Met 53 (2000) 241.CrossRefGoogle Scholar
  15. 15.
    Bornstein N S, DeCrescente M A, and Roth H A, Accelerated Corrosion in Gas Turbine Engines, Proceeding of Gas Turbine Materials, USA (1972), p 3.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • P. Subramani
    • 1
  • Nirmal Padgelwar
    • 1
  • Sanket Shetty
    • 1
  • Anirudha Pandit
    • 1
  • V. Sreenivasulu
    • 1
    Email author
  • N. Arivazhagan
    • 1
  • W. U. Duoli
    • 2
  • M. Manikandan
    • 1
  1. 1.School of Mechanical EngineeringVITVelloreIndia
  2. 2.College of Mechanical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations