Advertisement

Dielectric Properties of Calcium Copper Titanate Ceramics Exposed to Air and Dry Nitrogen Atmospheres

  • Disna P. Samarakoon
  • Nirmal Govindaraju
  • Raj N. Singh
Technical Paper
  • 18 Downloads

Abstract

The stability and consistency of electrical properties displayed by calcium copper titanate (CaCu3Ti4O12–CCTO) ceramics are the most important concern when they are used as capacitor dielectrics. This study investigated the influence of exposure to air and dry N2 atmospheres on dielectric properties of the as-prepared CCTO as a function of temperature. Solid-state synthesis route has been used to fabricate the CCTO sintered pellets at 1100 °C for 5 h in air. Highly inconsistent impedance spectra and dielectric properties are observed in the frequency range from 1 Hz to 1 MHz when the samples are tested in air at 23 °C. In contrast, stable and consistent electrical properties are obtained by testing the samples under dry N2. Value of tanδ as small as 0.014 and a large dielectric constant (ε′) of 12,935 ± 2 at 2.2 kHz are obtained when samples are exposed and tested in dry N2 at 23 °C. The details concerning the possible underlying mechanisms responsible for dielectric properties of CCTO are reported in this article.

Keywords

Processing Dielectric properties Atmosphere effect Supercapacitor Calcium copper titanate 

Notes

Acknowledgements

This project was supported by William’s Chair Fund through Oklahoma State University. Professor Raj N. Singh, an undergraduate Alumni of IIT-Kanpur dedicates this article to Dr. E. C. Subbarao for his many notable contributions to electrical ceramics, educational leadership, and mentoring of his students.

References

  1. 1.
    Subramanian M A, Li D, Duan N, Reisner B A, and Sleight A W, J Solid State Chem 151 (2000) 323.CrossRefGoogle Scholar
  2. 2.
    Homes C C, Vogt T, Shapiro S M, Wakimoto S, Subramanian M A, and Ramirez A P, Phys Rev B 67 (2003) 092106.CrossRefGoogle Scholar
  3. 3.
    Sinclair D C, Adams T B, Morrison F D, and West A R, Appl Phys Lett 80 (2002) 2153.CrossRefGoogle Scholar
  4. 4.
    Adams T B, Sinclair D C, and West A R, Adv Mater 14 (2002) 1321.CrossRefGoogle Scholar
  5. 5.
    Fang T-T, and Liu C P, Chem Mater 17 (2005) 5167.CrossRefGoogle Scholar
  6. 6.
    Guozhong Z, Jialiang Z, Peng Z, Jinfeng W, and Chunlei W, J Phys D Appl Phys 38 (2005) 1824.CrossRefGoogle Scholar
  7. 7.
    Ni L, and Chen X M, Appl Phys Lett 91 (2007) 122905.CrossRefGoogle Scholar
  8. 8.
    Lunkenheimer P, Fichtl R, Ebbinghaus S G, and Loidl A, Phys Rev B 70 (2004) 172102 (in English).CrossRefGoogle Scholar
  9. 9.
    Krohns S, Lunkenheimer P, Ebbinghaus S G, and Loidl A, Appl Phys Lett 91 (2007) 022910.CrossRefGoogle Scholar
  10. 10.
    Krohns S, Lunkenheimer P, Ebbinghaus S G, and Loidl A, J Appl Phys 103 (2008) 084107.CrossRefGoogle Scholar
  11. 11.
    Samarakoon D P, Govindaraju N, and Singh R N, Process Prop Des Adv Ceram Compos 259 (2016) 131.Google Scholar
  12. 12.
    Samarakoon D P, Govindaraju N, and Singh R N, Process Prop Des Adv Ceram Compos II 261 (2017) 237.Google Scholar
  13. 13.
    Macdonald J R, and Barsoukov E, History 1 (2005).Google Scholar
  14. 14.
    Zhang J L, Zheng P, Wang C L, Zhao M L, Li J C, and Wang J F, Appl Phys Lett 87 (2005) 142901.CrossRefGoogle Scholar
  15. 15.
    Li M, Sens Actuators B Chem 228 (2016) 443.CrossRefGoogle Scholar
  16. 16.
    Li M, Chen X L, Zhang D F, Wang W Y, and Wang W J, Sens Actuators B Chem 147 (2010) 447.CrossRefGoogle Scholar
  17. 17.
    Ahmadipour M, Ain M F, and Ahmad Z A, IEEE Sens J 17 (2017) 3224.Google Scholar
  18. 18.
    Ahmadipour M, Ain M F, and Ahmad Z A, Measurement 94 (2016) 902.CrossRefGoogle Scholar
  19. 19.
    Thornton E W, and Harrison P G, J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 71 (1975) 461.  https://doi.org/10.1039/F19757100461.CrossRefGoogle Scholar
  20. 20.
    Egashira M, Nakashima M, Kawasumi S, Selyama T, J Phys Chem 85 (1981) 4125.CrossRefGoogle Scholar
  21. 21.
    Mrabet C, Mahdhi N, Boukhachem A, Amlouk M, and Manoubi T, J Alloys Compd 688 (2016) 122.CrossRefGoogle Scholar
  22. 22.
    Shimizu Y, Arai H, and Seiyama T, Sens Actuators 7 (1985) 11.CrossRefGoogle Scholar
  23. 23.
    Liu J, Duan C-G, Mei W N, Smith R W, and Hardy J R, J Appl Phys 98 (2005) 093703.CrossRefGoogle Scholar
  24. 24.
    Yeh Y C, and Tseng T Y, J Mater Sci Lett 7 (1988) 766.CrossRefGoogle Scholar
  25. 25.
    Li M, Shen Z, Nygren M, Feteira A, Sinclair D C, and West A R, J Appl Phys 106 (2009) 104106.CrossRefGoogle Scholar
  26. 26.
    Jonscher A K, J Phys D Appl Phys 32 (1999) R57.CrossRefGoogle Scholar
  27. 27.
    Schlömann E, Phys Rev 135 (1964) A413.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Disna P. Samarakoon
    • 1
  • Nirmal Govindaraju
    • 1
  • Raj N. Singh
    • 1
  1. 1.School of Materials Science and Engineering, Helmerich Advanced Technology Research CenterOklahoma State UniversityTulsaUSA

Personalised recommendations