Advertisement

Effect of Nickel Addition on Microstructure and Mechanical Properties of the Spark Plasma Sintered Ti–6Al–4V Alloy

  • A. Muthuchamy
  • M. Rajadurai
  • A. Raja AnnamalaiEmail author
  • Dinesh K. Agrawal
Technical Paper
  • 25 Downloads

Abstract

The effect of nickel addition (2–6 wt%) to Ti–6Al–4V has been investigated using spark plasma sintering. The sintered samples were studied and characterized by using field emission scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction techniques. Mechanical properties of the sintered samples were determined. Results show that an increase in nickel addition significantly reduces the relative densities from 97.9 to 95.9% and the microhardness of the alloys increases from 330 to 502 HV500. The microstructural studies reveal a transformation; as Ni content increases, the equiaxed alpha phase and Widmanstatten alpha platelets in the Ti–6Al–4V alloy get refined and develop the clear grain boundaries with Widmanstatten lamellar microstructure. Sintered samples held for 30 min has the highest hardness value, while fracture morphology of the sintered compacts shows a transgranular fracture with fine dimple’s features, confirming good strength and cohesion of the grains. The percentage of elongation is greatly affected by the addition of nickel so that the sample exhibits a brittle nature with high ultimate tensile strength.

Keywords

Ti–6Al–4V Nickel Spark plasma sintering Microstructure Mechanical properties 

References

  1. 1.
    Yang F, and Gabbitas B, J Alloys Compd 695 (2017) 1455.CrossRefGoogle Scholar
  2. 2.
    Boyer R R, and Briggs R D, J Mater Eng Perform 14 (2005) 681.CrossRefGoogle Scholar
  3. 3.
    Jabur AS, Al-Haidary J T, and Al-Hasani E S, J Alloys Compd 578 (2013) 136.CrossRefGoogle Scholar
  4. 4.
    Esen Z, and Bor S, Mater Sci Eng A 528 (2011) 3200.CrossRefGoogle Scholar
  5. 5.
    Carman A, Zhang L C, Ivasishin O M, Savvakin D G, Matviychuk M V, and Pereloma E V, Mater Sci Eng A 528 (2011) 1686.CrossRefGoogle Scholar
  6. 6.
    Chen W, Yamamoto Y, Peter W H, Clark M B, Nunn S D, Kiggans J O, Muth T R, Blue C A, Williams J C, and Akhtar K, J Alloys Compd 541 (2012) 440.CrossRefGoogle Scholar
  7. 7.
    Brailovski V, Prokoshkin S, Gauthier M, Inaekyan K, and Dubinskiy S, J Alloys Compd 577 (2013) S413.CrossRefGoogle Scholar
  8. 8.
    Henriques V A R, de Campos P P, Cairo C A A, and Bressiani J C, Mater Res 8 (2005) 443.CrossRefGoogle Scholar
  9. 9.
    Hagiwara M, and Emura S, Mater Sci Eng A 352 (2003) 85.CrossRefGoogle Scholar
  10. 10.
    Chen B-Y, Hwang K S, and Ng K-L, Mater Sci Eng A 528 (2011) 4556.CrossRefGoogle Scholar
  11. 11.
    Dewidar M, Mater Des 31 (2010) 3964.CrossRefGoogle Scholar
  12. 12.
    Nouri A, Hodgson P D, and Wen C E, Acta Biomaterialia 6 (2010) 1630.CrossRefGoogle Scholar
  13. 13.
    Tabrizi S G, Sajjadi S A, Babakhani A, and Lu W, Mater Sci Eng A 624 (2015) 271.CrossRefGoogle Scholar
  14. 14.
    Li X, Zhou Q, Zhao S, and Chen J, Proc Eng 81 (2014) 1799.CrossRefGoogle Scholar
  15. 15.
    Banerjee D, and Williams J C, Acta Mater 61 (2013) 844.CrossRefGoogle Scholar
  16. 16.
    Long M, and Rack H J, Biomaterials 19 (1998) 1621.CrossRefGoogle Scholar
  17. 17.
    Yan J C, Zhao D S, Wang C W, Wang L Y, Wang Y, and Yang S Q, Mater Sci Technol 25 (2009) 914.CrossRefGoogle Scholar
  18. 18.
    Kamat G R, Weld J 67 (1988) 44.Google Scholar
  19. 19.
    Kundu S, and Chatterjee S, Mater Sci Eng A 425 (2006) 107.CrossRefGoogle Scholar
  20. 20.
    He P, and Zhang J H, Mater Charact 43 (1999) 287.CrossRefGoogle Scholar
  21. 21.
    Chang Y Y, and Lai H M, Surf Coat Technol 259 (2014) 152.CrossRefGoogle Scholar
  22. 22.
    Chen Y, Cheng T, and Nie X, J Alloys Compd 578 (2013) 336.CrossRefGoogle Scholar
  23. 23.
    Torun O, and Çelikyürek I, Mater Des 30 (2009) 1830.CrossRefGoogle Scholar
  24. 24.
    Atar E, Sabri-Kayali E, Cimenoglu H, Surf Coat Technol 202 (2008) 4583.CrossRefGoogle Scholar
  25. 25.
    Çelikkan H, Oztürk M K, Aydin H, and Aksu M L, Thin Solid Films 515 (2007) 5348.CrossRefGoogle Scholar
  26. 26.
    Kaestner P, Olfe J, and Rie K-T, Surf Coat Technol 142 (2001) 248.CrossRefGoogle Scholar
  27. 27.
    Qiu Z K, Zhang P Z, Wei D B, Wei X F, and Chen X H, Surf Coat Technol 278 (2015) 92.CrossRefGoogle Scholar
  28. 28.
    Liang W P, Miao Q, Ben N J, and Ren B L, Surf Coat Technol 228 (2013) 249.CrossRefGoogle Scholar
  29. 29.
    Qin L, Tian L, Fan A, Tang B, and Xu Z, Surf Coat Technol 201 (2007) 5282.CrossRefGoogle Scholar
  30. 30.
    Cong W, Yao Z, and Zhu X, Wear 268 (2010) 790.CrossRefGoogle Scholar
  31. 31.
    Xu Z, Liu X, Zhang P, Zhang Y, Zhang G, and He Z, Surf Coat Technol 201 (2007) 4822.CrossRefGoogle Scholar
  32. 32.
    Kim Y, Kim E-P, Song Y-B, Lee S H, and Kwon Y-S, J Alloys Compd 603 (2014) 207.CrossRefGoogle Scholar
  33. 33.
    Guan C, and Sun N, J Alloys Compd 699 (2017) 25.CrossRefGoogle Scholar
  34. 34.
    Yamanoglu R, Gulsoy N, Olevsky E A, and Gulsoy H O, J Alloys Compd 680 (2016) 654.CrossRefGoogle Scholar
  35. 35.
    Borkar T, Nag S, Ren Y, Tiley J, and Banerjee R, J Alloys Compd 617 (2014) 933.CrossRefGoogle Scholar
  36. 36.
    Tan C, Wang G, Ji L, TongY, and Duan X-M, J Nucl Mater 469 (2016) 32.CrossRefGoogle Scholar
  37. 37.
    Quan Y, Zhang F, Rebl H, Nebe B, Kessler O, and Burkel E, Mater Sci Eng A 565 (2013) 118.CrossRefGoogle Scholar
  38. 38.
    Rajadurai M, and Raja Annamalai A, Russ J Non-Ferr Met 58 (2017) 434.CrossRefGoogle Scholar
  39. 39.
    Diouf S, and Molinari A, Powder Technol 221 (2012) 220.CrossRefGoogle Scholar
  40. 40.
    Bolzoni L, Ruiz-Navas E M, and Gordo E, Mater Charact 84 (2013) 48.CrossRefGoogle Scholar
  41. 41.
    Locci A M, Orru R, Cao G, and Munir Z A, Mater Sci Eng A 434 (2006) 23.CrossRefGoogle Scholar
  42. 42.
    Yang Y F, and Qian M, in Spark Plasma Sintering and Hot Pressing of Titanium and Titanium Alloys in Titanium Powder Metallurgy. Qian M and Froes F H (eds) Butterworth-Heinemann, Boston (2015), p 219.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • A. Muthuchamy
    • 1
  • M. Rajadurai
    • 1
  • A. Raja Annamalai
    • 2
    Email author
  • Dinesh K. Agrawal
    • 3
  1. 1.School of Mechanical EngineeringVITVelloreIndia
  2. 2.Centre for Innovative Manufacturing ResearchVITVelloreIndia
  3. 3.Material Research InstitutePennsylvania State UniversityState CollegeUSA

Personalised recommendations