Advertisement

Effect of Hearth Liquid Level on the Productivity of Blast Furnace

  • Ashish AgrawalEmail author
  • Anil Kumar Kothari
  • K. Ramakrishna Rao
  • Padmapal
  • Manish Kumar Singh
Technical Paper
  • 18 Downloads

Abstract

Cast house is the heart of blast furnace operation. A stable blast furnace operation requires proper control of hot metal and slag drainage from the hearth. Various problems are encountered if the hearth liquid level exceeds above a critical limit that leads to an unstable blast furnace condition. Moreover, operating too often to control liquid level is also not recommended, as operational cost is increased and refractory erosion increases. Therefore, there is a need to understand the reason that prevails in the abnormal hearth liquid level situations. Understanding the effect of increased hearth liquid level on blast furnace process parameters will enable blast furnace operation to take the proactive actions of controlling the blast furnace abnormality. In the present review, an attempt is made to establish a correlational research to understand the effect on hearth liquid level on various casting parameters and blast furnace process conditions. The adverse effect of hearth liquid level build-up on the state of dead man, gas permeability, tuyere life, hearth linings, slag delay and furnace wall heat load is studied. The various casting strategies adopted in blast furnace operation are discussed along with their advantages and disadvantages, and finally, the recommendations are made to operate the liquid level on narrow band.

Keywords

Blast furnace Hearth Liquid level Dead man Drainage rate Permeability 

Notes

Acknowledgements

We would like to acknowledge entire BF operation and technology group of Tata Steel Jamshedpur for extending their operational knowledge. We are also grateful to Automation Division Jamshedpur for providing us opportunity to carry out the above work.

References

  1. 1.
    Gupta G S, Litster J D, Rudolph V R, White E T, and Domanti A, ISIJ Int 36 (1996) 32.CrossRefGoogle Scholar
  2. 2.
    Upadhyay H and Kundu T K, ISRN Metall (2013) 1.Google Scholar
  3. 3.
    Brännbacka J and Saxén H, ISIJ Int 41 (2001) 1131.CrossRefGoogle Scholar
  4. 4.
    Brännbacka J and Saxén H, ISIJ Int 43 (2003) 1519.CrossRefGoogle Scholar
  5. 5.
    Brännbacka J and Saxén H, Chem Eng Sci 59 (2004) 3423.CrossRefGoogle Scholar
  6. 6.
    Brännbacka J, Torrkulla J, and Saxén H, Ironmak Steelmak 32 (2005) 479.CrossRefGoogle Scholar
  7. 7.
    Agrawal A, Kor S C, Nandy U, Choudhary A R, and Tripathi V R, Ironmak Steelmak 43 (2016) 550.  https://doi.org/10.1080/03019233.2015.1127451.CrossRefGoogle Scholar
  8. 8.
    Agrawal A, Vishwakarma R K, Tripathi V R, Kothari A K, Prasad B, Kumar J, Ghosh U, Tiwari M, Kundu S, Agarwal M K, and Murthy G S R, Ironmak Steelmak (2017).  https://doi.org/10.1080/03019233.2017.1400732.
  9. 9.
    Fedorov I P and Bugaev S F, Metallurgist 50 (2006) 519.Google Scholar
  10. 10.
    Kurunov I F, Loginov V N, and Tikhonov D N, Metallurgist 50 (2006) 605.Google Scholar
  11. 11.
    Kurunov I F, Loginov V N, and Tikhonov D N, Metallurgist 51 (2007) 7.Google Scholar
  12. 12.
    Kumar A, Ali Khan S, Biswas S, and Pal A, Ironmak Steelmak 37 (2010) 15.Google Scholar
  13. 13.
    Dash S K, Ajmani S K, Kumar A, and Sandhu H S, Ironmak Steelmak 28 (2001) 110.  https://doi.org/10.1179/030192301678019.CrossRefGoogle Scholar
  14. 14.
    Dash S K, Jha D N, Ajmani S K, and Upadhyaya A, Ironmak Steelmak 31 (2004) 207.  https://doi.org/10.1179/030192304225012114.CrossRefGoogle Scholar
  15. 15.
    Wang G X, Chew S J, Yu A B, and Zulli P, ISIJ Int 37 (1997) 573.Google Scholar
  16. 16.
    Wang G X, Litster J D, and Yu A B, ISIJ Int 40 (2000) 627.CrossRefGoogle Scholar
  17. 17.
    Chew S J, Zulli P, and Yu A, ISIJ Int 41 (2001) 1122.CrossRefGoogle Scholar
  18. 18.
    Shen Y, Guo B, Chew S, Austin P, and Yu A, Metall Mater Trans B 46B (2015) 432.Google Scholar
  19. 19.
    Ishii J, Murai R, Sumi I, Yongxiang Y, and Boom R, ISIJ Int 57 (2017) 1531.Google Scholar
  20. 20.
    Nouchi T, Sato M, Takeda K, and Ariyama T, ISIJ Int 45 (2005) 1515.CrossRefGoogle Scholar
  21. 21.
    Kawai H and Takahashi H, ISIJ Int 44 (2004) 1140.CrossRefGoogle Scholar
  22. 22.
    Andreev K, Louwerse G, Peeters T, and van der Stel J, Ironmak Steelmak 44 (2017) 81.Google Scholar
  23. 23.
    Havelange O, Danloy G, and Franssen C, La Revue de Métallurgie-CIT Mars (2004) 195.Google Scholar
  24. 24.
    Pintowantoro S, Nogami H, and Yagi J I, ISIJ Int 44 (2004) 304.Google Scholar
  25. 25.
    Zhang H, Guo Y, and Chen C, Ironmak Steelmak (2017).  https://doi.org/10.1080/03019233.2017.1320083.
  26. 26.
    Nightingale R J, Dippenaar R J, and Lu W K, Metall Mater Trans B 31b (2000) 993.Google Scholar
  27. 27.
    Jiang Z H, Pan D, Gui W H, Xie Y F, and Yang C H, Ironmak Steelmak (2016).  https://doi.org/10.1080/03019233.2016.1254423.
  28. 28.
    Ito T, Yotsuji J, and Nagamune A, ISIJ Int 54 (2014) 2618.Google Scholar
  29. 29.
    Kunitomo K, Ichida M, Okada T, and Yamaguchi K, ISIJ Int 42 (2002) 1212.CrossRefGoogle Scholar
  30. 30.
    Desai B, Ramna R V, and Dey A, Ironmak Steelmak 34 (2007) 248.CrossRefGoogle Scholar
  31. 31.
    Upadhyay A and Kumar A, Tata Search (2002) 59.Google Scholar
  32. 32.
    Roy B N and Kumar U, Int J Latest Trends Eng Technol 8 (2017) 51.  https://doi.org/10.21172/1.81.007.CrossRefGoogle Scholar
  33. 33.
    Kaymak Y, Hauck T, Lin R, and Rausch H, Simulation of Slag/Gas and Slag/Iron Interface Tilting in Blast Furnace Hearth during Slag Tapping. Comsol Conference Rotterdam, at Rotterdam (2017).Google Scholar
  34. 34.
    Wang H, Zhang J, Liu Z, Wang G, Jiao K, Liu D, Yan X, and Yang T, Ironmak Steelmak (2017).  https://doi.org/10.1080/03019233.2017.1303912.
  35. 35.
    Barman S C, Prachethan Kumar P, Uddar L, Mahapatra P C, Sekhar V R, and Ranjan M, Ironmak Steelmak 37 (2010) 98.  https://doi.org/10.1179/030192309x12549935902220.
  36. 36.
    Duarte R M, Ruiz-Bustinza I, Carrascal D, Verdeja L F, Mochón J, and Cores A, Ironmak Steelmak 40 (2013) 350.Google Scholar
  37. 37.
    Shibata K, Kimura Y, Shimizu M, and Inaba S, ISIJ Int 30 (1990) 208.Google Scholar
  38. 38.
    Shibata K, Kimura Y, Shimizu M, and Inaba S, Le Revue de Metallurgie- CIT, Avril (1990) 333.Google Scholar
  39. 39.
    Vats A K and Dash S K, Ironmak Steelmak 27 (2000) 123.Google Scholar
  40. 40.
    Torrkulla J and Saxén H, ISIJ Int 40 (2000) 438.CrossRefGoogle Scholar
  41. 41.
    Panjkovic V, Truelove J S, and Zulli P, Ironmak Steelmak 29 (2002) 390.Google Scholar
  42. 42.
    Guo B-Y, Maldonado D, Zulli P, and Yu A-B, ISIJ Int 48 (2008)1676.CrossRefGoogle Scholar
  43. 43.
    Zhou D, Cheng S, Wang Y, and Jiang X, Ironmak Steelmak 44 (2017) 714.  https://doi.org/10.1080/03019233.2017.1339398.CrossRefGoogle Scholar
  44. 44.
    Torrkulla J, Brännbacka J, Saxén H, and Waller M, ISIJ Int 42 (2002) 504.Google Scholar
  45. 45.
    Geerdes M, Toxopeus H, van der Vlient C, et al. Modern Blast Furnace Iron Making: An Introduction, pp. 1–164, IOS (2009).Google Scholar
  46. 46.
    Cheng W T, Huang C N, Du S W, Chem Eng Sci 60 (2005) 4485.CrossRefGoogle Scholar
  47. 47.
    Alter M A, Brunner J M, and Holmes D J, Continuous Monitoring of Liquid Level and Thermal State in the Hearth Based on Measurement of EMF on the Blast Furnace Shell. AISTech Proceedings (2012), p 429.Google Scholar
  48. 48.
    Agrawal A, Kothari A K, Ramna R V, Padmapal, and Singh M K, Metall Res Technol (2018).  https://doi.org/10.1051/metal/2018100 (accepted article).

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Automation DivisionTata Steel LimitedJamshedpurIndia
  2. 2.Blast Furnace OperationTata Steel LimitedJamshedpurIndia

Personalised recommendations